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Abstract. The problem is to approximate, with local second-order accuracy, the smooth 
boundary separating a black and a white region in the plane, given discretely located 
gray values associated with a blurring of that border. "Second-order", here, is with 
respect to the size h of the scale of the prescribed blurring. The locally determined 
approximations are line segments. The algorithms discussed here can result in second- 
order accuracy, but they may not in certain geometric circumstances. Typical local 
curvature estimates based on adjacent line segments do not converge, but an atypical 
one does. Consideration of a class of scaled blurrings leads to a type of blurring of 
borders which is particularly easy for a computer to undo locally, yielding a line which 
is locally second-order accurate. Some extensions to three (and more) dimensions are 
appended. 

1. Introduction, Color Functions, One Dimension, Summary. This 
work was motivated initially by the following facts: In computational fluid dynam- 
ics various regions of the fluid have their own physically important characteristics. 
The volume-of-fluid method (e.g., Nichols and Hirt [22]) keeps track of interfaces 
between such regions by assuming each is colored its own uniform, physically irrele- 
vant, color; and a transport equation is added to move these colors. With this, local 
movement of an interface takes place at the local fluid velocity. In the discretiza- 
tion of the color's transport equation, the numerical quantities kept track of are the 
average color of each of the (congruent) square cells of the computational mesh. 
The SLIC algorithm (Noh and Woodward [23]) uses similar quantities to locate 
interfaces. For recent work concerning interface approximation in computational 
hydrodynamics, see Hyman [19, p.402J. 

This paper provides a framework, with an initial analysis, for the approximate 
reconstruction of borders using discretely located values of locally averaged col- 
ors; and it proposes certain algorithms possessing the potential for second-order 
accuracy second-order, that is, in terms of the size of the scale of the prescribed 
blurring. This potential proves realizable for many types of scaled blurring and geo- 
metric circumstances but not necessarily for all. Lack of second-order accuracy for 
an algorithm reproducing linear interfaces is of particular interest to the numerical 
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analyst, as is the complete lack of convergence of the simplest curvature-estimating 
algorithms based on the rate that approximate tangents seem to turn. Only brief 
comment is made concerning applications to computational hydrodynamics. 

Let us idealize the problem as follows. The plane is decomposed into two regions, 
Q0 and O1, separated by their common border (boundary, edge, interface) 3 this 
bordering curve is assumed to have bounded curvature, to not cross itself, and to 
consist of one component only. Associate with this setup the color function, c, 
defined by 

[. x in Oo, 
(1.1) c(x) 1, x in O1, and 

1/2, x in 3. 

In particular, and somewhat artificially, 3 is the inverse image of 1/2 under the 
map c. Let S(x, h) be the square of area h2, centered on the point x, and with 
sides parallel to the coordinate axes. Associate with c and S the "average color" 
function 

(1.2) c(x) ff || c(E) dA(E) /h2, x in the plane. 
S(x,h) 

For h sufficiently small (relative to 3's curvature), the set c-1(1/2) is 1-dimensional 
and approximates 3. Given a uniform mesh of points Xi := (i1 h, i2h) of gridsize 
h-the same h as in S-we shall consider the use of meshpoint values ci := c(Xi) 
in approximating 3. 

Indeed, such local averaging makes it possible to reconstruct a piecewise constant 
function of one variable, and the associated algorithm is completely understood. 
In this context, there is clearly not enough information in the values c(xz) of the 
function c(x) := 0, x < d; c(x) := 1, otherwise, on a uniform mesh xi ih, 
to allow one to locate the discontinuity better than finding the two mesh points 
between which it lies. Yet, a single value e(x,), of the corresponding average color 
function c(x) (i.e., c averaged over an interval of length h centered on x), enables 
one to locate d perfectly, if that value is the one meshpoint value of c- which lies 
strictly between zero and one use the known behavior of c nearby (namely, linear, 
with slope 1/h) to locate d relative to x; via c(d) = 1/2. (If there is no such value, 
then d lies precisely halfway between the two meshpoints on which c changes). 
Moreover, second-order, i.e., 0(h2), accuracy in the location of d is feasible as 
long as (a) perturbations x -j _x; and e(x,) -c are second- and first-order, 
respectively, while (b) c; still lies strictly between the left and right limits--in 
particular, were the jump in c of order one, its left and right limits known within 
0(h), and dc/dx bounded on a punctured neighborhood centered on d and of length 
at least 2h. To complete this one-dimensional example, we note that the similar 
use of other local linear approximants (e.g., the interpolant of both the gray value 
and the nearest black/white value which, with it, embrace 1/2) yield an 0(h) (but 
generally not 0(h2) ) accurate estimate of d. 

This blurring of a discontinuity and the subsequent reconstruction of its location 
exemplifies one technique for representing a "sub-grid scale" quantity on a grid in 
such a way that it can be accurately recovered. 
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We shall explore the extent that these ideal results extend to two eventually, 
more-dimensions. As above, our approach will be based more on the blurring 
than on its rates of change-more on pinpointing the peal than the ha-ha (to make 
a metaphor, in view of their possible cross-sections (Huxley [18, p. 97]), of those 
border-delimiting constructs of 18th century landscape architecture). The expo- 
sition begins by developing notions necessary for border reconstruction using the 
example of values of the particular average coloring (1.2) on a uniform h x h mesh. In 
this connection, Section 2 observes that first-order (O(h)) accurate border approxi- 
mation is relatively easy, but that the use of level curves of certain local polynomial 
interpolants will not improve this order of accuracy. Section 3 suggests that algo- 
rithms which reproduce arbitrary linear borders could lead to higher-order accuracy 
for curved borders, it defines notions appropriate to such reconstruction (such as 
the behavior of the average color as one continuously crosses a linear border perpen- 
dicularly) and exemplifies them with the orientation-dependent quadratic splines 
(3.2) associated with the average coloring (1.2) (nth degree splines for polyhedra 
in n dimensions-see Appendix 4); it then completes proof of the mere first-order 
accuracy of the appropriate level line of the linear interpolant of three gray colors 
(1.2) (cf. Counterexample 3.1), and it mentions the previous work in computa- 
tional hydrodynamics (by DeBar and, later, Youngs) which has utilized the exact 
reconstruction of linear borders from meshpoint values of (1.2). 

The dependence on orientation of the behavior of the average color (1.2) as one 
crosses a linear border perpendicularly complicates the reconstruction of such bor- 
ders. A more general moving average is defined in Section 4 it utilizes a scale h 
which localizes its effect as h gets small, and it contains (1.2) as a special case. It 
also contains other local averages whose perpendicular border-crossing behavior is 
independent of orientation, a circumstance allowing particularly simple reconstruc- 
tion of linear borders from two exact and discretely located gray values. (As with 
the sign of a square root, there are generally two linear borders which solve the 
problem-i.e., yield the two gray values and additional data about the context 
(like a third value of the average color) is necessary to choose between them). Cf. 
Sections 5-7 and Summary 7.1. The associated Algorithm 7.1 depends nonlinearly 
on its data, and it need not yield a line if it is given incorrect data. Moreover, its 
stability (linearized) can depend on orientation (Proposition 8.1). Hence, as the 
curvature of a curved border perturbs the gray values one would associate with a 
local tangent half-space (by order h as h gets small Remark 8.1), the accuracy of 
the line the algorithm produces from these perturbed values, although usually of 
order h2, can be at least as bad as order h3/2 in certain geometric circumstances 
(Propositions 8.2 and 9.1). (However, a footnote points out that, in the application 
of DeBar's algorithm to curved borders using the gray colors of two h x h squares 
having a common side, the accuracy is 0(h2).) 

As one moves along near a blurred border, each successive pair of gray colors 
can now determine its own approximating line segment, and the turning of these 
segments should allow an estimate of the border's curvature. But the simplest 
approaches to this prove to be so inaccurate as to not even converge as h gets 
small and it is only through a careful analysis of the error in the segments' direc- 
tions (Proposition 9.1) that one can utilize successive pairs of directions to obtain 
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a more complex but now convergent curvature estimate (Proposition 9.2). In 
Section 10 we attempt to do for curvature estimation what we succeeded in doing 
in Section 6 for border approximation; namely, to create a special scaled aver- 
aging whose discrete values could allow particularly easy implementation of the 
algorithm. Unfortunately, the associated integral equation in this instance is not 
known to have a solution. 

Our analysis shows that the quantities entering error estimates, as the scale h of 
the local average gets small, reflect the dual nature of the data i.e., of the locally 
averaged color. From the viewpoint of the border, the local averaging shrinks to 
a point. Hence, the important characteristics of the border are its characteristics 
relative to that point like the border's local curvature. But from the viewpoint 
of the probability distribution which does the blurring, the border straightens to 
become a line. Hence, the important characteristics of the probability distribution 
are its characteristics relative to that line like the line's various moments, under 
the induced mass distribution, about the point nearest the origin moments nor- 
malized by the induced mass of the line. Moreover because we are basically using 
two local averages to determine a local tangent's direction it is not surprising that 
it is actually a difference quotient of these "specific moments" that enters the error 
estimates. 

Since two discretely located gray values of the average color suffice (essentially) 
to determine a linear border which would yield them (when such a border exists), 
additional gray values are redundant for that purpose. Yet, some algorithms already 
extant use more than two values. For example, Youngs' algorithm uses all nine 
average colors in a 3 x 3 pile of mesh squares. In Sections 11 and 12, we present 
two algorithms; each is based on three gray values. Section ill's algorithm was 
designed to avoid iteration even when the behavior of the local average upon 
perpendicularly crossing a linear border depends upon orientation. The algorithm 
is novel in that it requires two gray values to be located far enough from a third, 
midway point, to allow an explicit and convergent estimate of the border's direction 
nearby. The line produced by this algorithm is proved second-order accurate near 
the midway point in spite of the fact that it fails to reproduce even linear borders. 
Section 12's algorithm involves data from three neighboring but strictly noncolinear 
locations. It is shown stable (so, second-order accurate since it reproduces linear 
borders) independent of orientation at least, for local averages whose behavior 
when perpendicularly crossing a linear border is independent of orientation. 

Some matters associated with the application to computational hydrodynamics, 
of border reconstruction from the values of scaled blurrings, are brought up briefly 
in Section 13. 

The application of an integral equation to the analysis of unexpectedly accurate 
edge perception (at the end of Section 6) is our only explicit indication of relevance 
of this paper to visual matters. However, a referee has kindly noted other points 
of contact with image processing and computer vision by mentioning the following 
concepts from those fields: "... approximating lines in pixel grids; the notions of 
subpixel accuracy in edge detection and of Gaussian convolution for blurring and 
interpolation. The use of a continuum of scales of blurrings of an image, where 
the blurring kernel is a Gaussian, is called 'scale-space' in the computer vision 
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literature, and level-crossings in scale-space is an active area of interest... ". The 
IEEE's special image processing issue (Hunt [17]) is a standard reference on that 
general subject. 

Although image processing and other visual applications would seem to be asso- 
ciated with scaled blurrings in two dimensions only, computational hydrodynamics 
is becoming more capable of and, so, more concerned with the approximation 
of interfaces between three-dimensional regions. Appendix 1, then, concerns the 
extension of many of this paper's two-dimensional notions to n dimensions. Among 
other things, algorithms are described which determine without iteration the 
(up to two) hyperplanes (if any) which are at n prescribed (signed) distances from 
n points in general position in n-space. Another generalization namely, the pos- 
sibility of second-order accurate reconstruction using scaled blurrings which them- 
selves vary nonsmoothly from data-point to data-point (e.g., the average color of 
triangles in an irregular triangularization of the plane) is also briefly considered. 
Finally, another appendix considers the problem of the existence of linear borders 
which would yield prescribed average colors at specified locations the reader will 
recognize this to be a nontrivial generalization of the "ham-sandwich problem" of 
Steinhaus. 

2. First-Order Approximation. It is easy (in principle) to approximate the 
border 3 to first-order accuracy using the values of c- (1.2) on a uniform h x h grid 
{Xi}. For, let B be the set of Xi on which c- is strictly between 0 and 1. Then, 
because the (Hausdorff) distance of B from /3 is 0(h), any curve within 0(h) of B 
is within 0(h) of /3 in this sense. (On the other hand, practical algorithms which 
compute plane curves approximating discrete point sets can be complicated, and 
they will not be explored in this paper.) A label associated with the significant 
values of c- will be useful: 

Definition 2.1. The data (Xi, c), Xi in B, is defined to be the set of "usable 
data"; similarly, a meshpoint Xi, or a value i of c- there, is "usable" if and only if 
& lies strictly between zero and one. 

The average color c(x) (1.2) is piecewise smooth; but, as h gets small, the gradient 
of c gets large near the border /. So it is not surprising that algorithms based on a 
local linear interpolant, 1, or a local bilinear interpolant, b, of its mesh-point values 
i can fail to yield second-order accuracy. (b has a second interpretation: let the 
piecewise constant coloring g(x) take on, for each i, the value & for x in the open 
h x h square centered on Xi. Then, b is the average color - of g.) The continua 
Cb := b-'(1/2) and C1 := 1-1(1/2) can be second-order approximations to 3 in 
special cases: for example, Cb and Cl actually coincide with 3 when 3 is a straight 
line which passes through immediately adjacent mesh points. But, even if 3 is 
only a more generally located line, then the localized hyperbolas (or lines) which 
constitute Cb or Cl can contain points which are of order h away from /3. 

In the case of Cb this result is the analog of the corresponding case in one space 
dimension (Section 1) where, if one uses the linear interpolant of the single unit of 
usable data and an adjacent, unusable unit, then the error in the location of d is 
not o(h) except in special situations. For, contemplating the possible meshpoint 
values of c- associated with a linear border 3, one sees that there exists no mesh 
square with all four of its corners usable. It follows, as in one dimension, that Cb 
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cannot be o(h) accurate if any corner is usable (unless two of the c- are within 
o(h2) of 1/2, or unless two are within o(h) of 1 and the other two are o(h) ). There 
can exist three adjacent, usable, and noncolinear Xi. The analysis of 1 in this case 
is more involved (see Counterexample 3.1); the result is that Cl, too, is not an o(h) 
accurate approximation to linear borders f except in quite special circumstances. 

3. Towards Second-Order Approximation. A working principle often yield- 
ing second-order accurate approximation is that the algorithm should reproduce 
linear functions. This is interpreted for the reconstruction problem as the following 
principle: The algorithm should exactly reconstruct from associated usable data, all 
boundaries f3 that are straight lines L = L(Iv, A) with arbitrary unit normal vector 
v (chosen pointing into O1) and at an arbitrary (signed) distance A measured from 
some known point along Iv.** The three algorithms to be presented (Sections 7, 
11, and 12) produce only lines L, and from local, usable data (Xi, e(Xi)); the pro- 
duction of these lines possesses an appropriate invariance under rigid motions and 
changes in the scale h; and two of the three obey our principle. We shall show when 
these lines provide, in the locale of the data, a second-order accurate approximation 
to curved borders f (see Sections 8, 9, 11, and 12). 

But, to continue pursuit of the relative inaccuracy of local linear interpolants: 
observe that the level curves of the average color function -L, associated with the 
h x h square S(x, h) and the two regions separated by a line L, are lines parallel to 
L. Moreover, CL(X) is only a function f, (a) of the (signed) scaled distance a s/h 
from x to L, with s, say, as measured along L's normal, Iv. Ambiguity is removed 
by choosing s > 0 in Q1. With this, and no matter how L is oriented, (1) f, is 
strictly monotone increasing where it is neither 0 nor 1; (2) the symmetry of S 
means that f, = 1/2 exactly when a = 0, i.e., 

(3.1) L = CL-1(1/2) independent of L and h; 

and (3) the graph of fv is symmetric under reflection through the point (0,1/2). 
f, is called the cumulative distribution function for tv-normal lines (with respect to 
the centered unit square). It behaves as follows. 

If v is (+1, 0) or (0, +1), then (because a side of S passes over L, all at once as 
S moves along the normal) f, is piecewise linear with its nontrivial portion given 
by a + 1/2 for Jul < 1/2. If v = (+XV/2, +XV/2), then (because only a corner 
of S makes initial contact with L,) f, is piecewise quadratic --in fact it is the C' 
quadratic spline which is identically zero (or one, appropriately) for Jul > /2, 
has knots exactly at a = 0 and +V'X/2, and is 1/2 at a = 0. In the general case, f, 
is also a C' quadratic spline, but with three nonconstant pieces instead of two the 
middle section is linear with midpoint (0,1/2) and represents C~L when exactly two 
of the square's corners are on each side of L. Summarizing, and more precisely, the 
cumulative distribution function for v-normal lines is given by the following: With 
0(v) the magnitude of the angle that the line's normal Iv makes with the nearest 

**I now know that this requirement was independently expressed in the sixties by DeBar [11] 
and the seventies by Youngs [281, [29]. Cf. the end of this section. 
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coordinate axis (so that 0 < 0(v) <? ir/4), and with (a, 0) := (cos 0 + sin O)/2- Jl, 

j/ cos0, 0? 12a1 < cos 0-sin O, 

(3.2) fv(a) = 1/2 + (1/2 - g2/sin 20) sgna, <cos 0? sin, 

1 (1/2) sgn a, 12a > cos 0 + sin S. 
To verify, as promised in Section 2, that the linear interpolant I of usable adjacent 

noncolinear meshpoint values of CL need yield only a first-order approximation 

1-(1(/2) =: Cl to L, consider the case that, as h -O 0, the line segment XiXj 
from a usable Xi to its usable neighbor Xj makes an angle 0 6 0 with the nearest 
coordinate axis. With &c := L(Xi), suppose without loss that ei < c; and (for the 
moment) that ei < 1/2 < ej. Define ai and aj by 

f,(- al) := ei, Mvaj) := ej. 
Now, along XiXj, I varies linearly from Ei to c;; so (on XiXj) 

1-1(1/2) = Xi + (Xj - Xi)(1/2 - Ci)/(Cj -ci). 

However, as the level lines of c are parallel to L, c itself varies in concert with 
f, (3.2) : for x in XiXj, 

C(x) = fv(- vi + (aj + 0i)IIx - XiII /IIX - Xi )I 

Now, the graph of fv is symmetric under reflection through (0,1/2): for a > 0O 

f, (a) - 1/2 =: g(a) = 1/2 - fv(-a) 

(note g(O) = 0, g is differentiable with Dg nonincreasing, and D2g is piecewise 
constant). Using the graph of f>, one finds that on XiXj, and with gi := g(ai) and 

gj := g(a3), 

IC-1(1/2) - 1-1(1/2)1 = haraj gig/ai - gj/alj /(gi + gj)- 

Consequently, if either &i or c;, lies strictly away from the linear portion of fv, i.e., 
if 

(3.3a) min(c-, c;) < (tan 0)/2 + o(h), or max(ci, Cj) > 1 - (tan 0)/2 + o(h), 

and if 

(3.3b) c; + --g1 (= g3- i) # o(h), 

then the error in locating the intersection of L with XiXj, using 1-1(1/2), is not 
o(h). 

This result is unaltered if Ci and c;i lie on the same side of 1/2. 
Consider, now, the case when three vertices of a mesh square X1X2X3X4 are 

usable without loss, assume (X4, 4) is unusable and C4 = 0 and let Si be the 
h x h square centered on Xi with X the point common to all four Si. Since L 
intersects the interior of all squares but S4, (a2,C2) lies in the nonlinear portion 
of fv, and c2 > 1/2. There are a number of cases to consider. Suppose, (1) that 
C2 = 1 - o(h), i.e., L is within o(h) of X. The only way for (3.3b) to fail is that 
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0 = o(h); i.e., L becomes a parallel to a coordinate axis lying halfway between 
meshpoints; this is one of the exceptional cases when 1-1(1/2) can approach L 
within o(h). Now, suppose C2 : 1 - o(h). For (3.3b) to fail for j = 2 and i = 1 or 3, 
L must cut the rectangle Si U S2 into two trapezoids of nearly equal area. For this 
to be so for both i = 1 and 3, (2) 0 must approach ir/4 while L again comes close 
to lying halfway between meshpoints. This is a second exception. So, now suppose 
(3.3b) is satisfied for j = 2 and some i. For c2 to approach the linear portion of 
f, some point of L must approach the triangular half of S2 opposite X. If more 
than one point does, we have case (2) again. If only one point does say, between 
S2 and S1 then c1 approaches zero. But, L cannot approach X that would be 
exception (1), so c1 is in the other nonlinear portion of f, and is not within o(h) 
of its linear portion. This concludes the proof of 

COUNTEREXAMPLE 3. 1. Unless a linear border d = L comes close to lying 
halfway between meshpoints parallel to a side of a mesh square or to its diagonal, 
the linear interpolant I of three usable values of c on a mesh square (the fourth being 
necessarily unusable) yields a line Cl := 1-1(1/2) whose points in the mesh square 
are not all within o(h) of L. 

But, in the remaining case of usable data (Xi, c-) associated with a linear border 
di = L, local linear interpolation assists in exactly reproducing L indeed, this case 
corresponds to the use of the single unit of usable data in one dimension. The data 
for this case satisfy: on two adjacent mesh squares, the two common meshpoints 
X1 and X2 are usable while the remaining four are not. So, since L passes out of 
the rectangle S, U S2 through its short sides, both S1 and S2 have a pair of corners 
on either side of L. Thus, c itself is linear on the line segment X1X2-and, so, 
between c- and 1/2 on any line through Xi, i = 1 (or i = 2); in particular, on the 
line normal to L. Consequently, L can be pinned down almost uniquely as follows. 

For now, according to the top line of (3.2) and for i = 1 or 2, the distance of 
L = L, from X, is hjI - 1/21 cosO(v) =: ri(v). This means that, for each (now 
unknown) v, the only possible candidates are one of the up to four lines each with 
its two normals tangent to these two circles; and the signs of the ci - 1/2 reduce 
these line/normal candidates to two (see Section 7 and Appendix 2). As a border, 
one of these lines will yield the given ci as its average color at the two Xi if and only 
if its normal makes the angle 0 with a coordinate axis. So: one guesses a normal, 
determines the two radii, selects the more compatible mutually tangent line with 
its normal, and iterates appropriately. 

This exemplifies the fact that one may, in complete analogy with the one- 
dimensional case, (almost) uniquely locate a linear border relative to any "usable" 
line segment X1X2, i.e., any segment such that the data (X1,, C) and (X2, E2) are 
both usable. One does not approximate c on X1X2 to do this; one assumes (3.2) 
holds exactly (suitably stretched) on the segment for some v, and one both de- 
termines L's distance from the Xi and orients L with respect to the line segment 
directly from the data. There will generally be two lines compatible with two usable 
data---indeed, the symmetries involved here imply reflection of a solution (with its 
normal) in the line containing X1X2 will be the other solution btut a third datum 
allows the appropriate choice. Again, see Section 7 and Appendix 2. 
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So, the apt notion seems (and will prove) to be not that three points determine a 
plane and so a surface approximating the average color function near the border, 
from which the border itself may be estimated but that two points, albeit blurred 
to circles, directly determine a line locally approximating the border. 

I have subsequently become aware that DeBar [11] notes and uses the fact that 
the areas a line cuts from two adjacent mesh squares (almost) determine that line- 
and that this also comprises the kernel of Youngs' [28], [29] algorithm. Given the 
average color of each cell in a 3 x 3 pile of congruent rectangular cells, Youngs 
associates a line with the central cell (presumed usable) as follows. For each of 
its eastern, western, northern and southern neighbors in turn (and if usable), he 
constructs the intersection of the line yielding the two average colors choosing be- 
tween the two possible solutions using other average colors with the cells' common 
edge (the exceptional case of intersection near a corner is treated with sufficient 
accuracy). It is apparent from Youngs [27] that he could have constructed the line 
itself. It is particularly striking that this kernel of Youngs' procedure [27] does not 
invoke lines mutually tangent to circles or the iterations we propose for this case it 
is direct and explicit. Youngs goes on to mold all this information into an algorithm 
by determining, from these intersections, the normal M to the line associated with 
the central cell; and then, from v and this cell's average color, the line itself. 

4. Other Scaled Averages. The use of a grid-size square in defining the "av- 
erage color" function c- (1.2) (of a color function c) led to various difficulties in 
reproducing linear borders from its meshpoint values. We now consider more gen- 
eral averages, some of which will ease these difficulties. 

Assume one is given a probability density p defined on the plane. Redefine the 
"average color" of a color function c to be the scaled convolution 

(4.1) c(x) :f= p((( - x)/h) c(() dA(() /h2; 
plane 

it bears the scale h as a parameter. Associated with p is its cumulative distribution 
function for v-normal lines, 

r00 0o 
(4.2) fV(a) J J p(sv + tw) dt ds, w Mi = 0, jjwjj = 11V11 = 1. 

-a -oo 

Recall that when the border is a linear border, L = Lv, M points into Q1--i.e., 
towards that side of L where c = 1---so that still, as above (3.1), CL(X) = MU), 
with ha, the signed distance from L to x as measured along v, being negative for 
x in Q0 and nonnegative, otherwise. Concerning the present analog of (3.1) itself: 
for L = Lv to coincide with C- 1 (fv(0)) (and not be just a proper subset), one 
must assume that fv is strictly monotone at a = 0. We shall, in fact, impose a 
stronger extension of this: let Mo(a, v) := (fvl/a) (a, v) be the mass of the line 
(induced by the restriction to it of p) which is normal to M and passes through the 
point (-cai, -avy). Then we assume, for each v, that the interior of the support of 
Mo( , v) is a nontrivial interval which contains 0 and on which Mo(t , v) is positive. 
In particular, then, fv (0) > 0; and fv (0) = 1/2 if p is symmetric under reflection 
through the origin. 
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The use of general densities can lead to the same type of orientation problems 
that the square led to. What is the simplest which has no orientation problems? It 
is the characteristic function of a circular disc. 

5. Using the Average Color of a Disc. With p given by 4/wx times the 
characteristic function of a circular disc centered on the origin and of diameter 
one, we use (4.1) to define the "disc-average" color function c of a color function c. 
This average color also has the properties noted in the paragraph containing (3.1). 
But, now, the associated "cumulative distribution function for v-normal lines L" is 
independent of L's orientation, i.e., of v, and is given by 

(5-1 f () = /2 + (sin-'(2o) + 4a 1 - ~472~ ) /ir, fJuf 
? 1/2, 

(5.1) f(cT) = 1/2 + { sgn a/2, Jul ?w! 1/2. 

At each joint ao with its constant pieces it deviates by (4/7r) la - ao 13/2 (1 + o(1)) 
from being constant--this represents a compromise between the two possible be- 
haviors of (3.2) at those joints. 

f (5.1) is incorporated into an algorithm to reproduce lines L from nontrivial 
meshpoint values of c as follows. From the two usable values, El = CL(Xi) and 

2= cL(X2), find 01 :=f(c) and U2 f'(M2). Then (see Section 7 for 
details), L is one of the (up to four) lines simultaneously tangent to the two circles 
Ci (i = 1 and 2) centered on Xi and of radius ri := h jlo. (Here, h is the scale 
parameter utilized in (4.1) in this case the diameter of the circle one chooses to 
average over.) The reflection of such an L (with its normal) in the line containing 
the segment X1X2 is a second solution (if distinguishable from L). Of the up 
to eight line/normal possibilities, at most two are solutions; and the choices are 
easily made using c1 and c2. The value of CL (X3) at almost any third point X3 

discriminates between these two solutions. 
However, if the usable values E. are not known in advance to be EL (Xi) for some 

line L = LV, then there may exist no Lv such that CL(Xi) = Ei for i = 1 and 
2. For, the required change kc2 - cl I may be too large for the average coloring c 
to accomplish it in the given distance jjX2 - Xj even if L were perpendicular 
to X1X2. This is also easy to decide; see Section 7, especially Summary 7.1. In 
practice, one would use two usable values of c associated with a smooth border 
f values bounded away from both zero and one and at two points of order h 
apart to determine a pair of lines. The appropriate one of the pair can be and 
is selected on the basis of a third value of c nearby. Then, if XlX2 is not nearly 
normal to the border f, any portion of this line in any 0(h) neighborhood of the 
two points will be within 0(h2) of fi (Propositions 8.2 and 9.1). 

The same sort of algorithm works for any probability density p (Section 4) which 
is azimuthally symmetric, i.e., is a function only of r in polar coordinates centered 
on the origin. The new associated cumulative distribution function for lines f 
(4.2) replaces (5.1) in the algorithm just described (for more detail, see Algorithm 
7.1 below). Since the derivative of f is bounded away from zero except at the 
extremities of f's usable interval (see the end of Section 4), this algorithm will 
also yield locally second-order accurate approximation to curved borders in the 
circumstances just described. 
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It can be computationally costly to repeatedly invert even a strictly monotone 
function f, either analytically or numerically, unless f is linear. How could this 
last be arranged? 

6. Discs Suitably Sensitive to Lines. Let us see if we can make the disc 
sensitive, in some fashion, so that the associated cumulative distribution function 
for lines f is linear where it is neither zero nor one: 

(6.1) f (a) = 1/2 + a , Jl T 1/2, 
l.sgnoj/2, Jul ? 1/2. 

Then, f would coincide with the original f, of (3.2) when L was parallel to a side 
of the square S we then averaged over (see (3.2) with 0 = 0). The use of such an f 
in the algorithm of Section 5 would be particularly easy, since (now) vi = c - 1/2. 
Moreover, there would exist a line L with CL(Xi) = C (i = 1 and 2 both usable) if 
and only if c2 - c 1 < jjX2 - Xijj /h (see Summary 7.1). And, there would exist 
exactly two such lines (each the reflection with its normal-of the other in the line 
containing X1 X2) if and only if the inequality is strict (again, see Section 7). The 
local approximation properties of lines locally determined from local usable data 
associated with this special disc-averaging, data further restricted as in Section 5, 
would be as there described. 

This special density, p, will be azimuthally symmetric; and, nonzero only on the 
disc of diameter one which is centered at the origin. Now, unlike the square just 
encountering a line L parallel to its side, the disc bends away from L. Hence, p(r), 
r = VX2+ y2, will have to be quite large at the circumference r = 1/2 of the disc; 
in fact, it becomes infinite there like 1/ 1/I2- r. To see this, note that the rate 
of change of f (6.1) is the amount of p on a line perpendicular to a radius and a 
distance a from the disc's center: for 0 < a < 1/2, 

(6.2) (df /da) (a) = 1 = 2j p(vo2 + z2) dz. 

One easily verifies that the solution of (6.2) is 

(6.3) p(r) 1/ (ir 1/4 - r2), 0 < r < 1/2. 

Since p(r) > 0 and the amount of p on the half-disc is f~1/2 1 da, p is indeed a 
probability distribution on the disc. 

The integral equation (6.2) was not solved by inspection. It happens that (6.2) 
also occurs in the determination, from X-ray observations experimentally specifying 
a (more general) function df/da above, of an azimuthally symmetric but otherwise 
unknown density distribution p in a solid ball (e.g., Carter, Pimbley, and Wing 
[7], Wing [26]). In this connection, Carter, Pimbley, and Wing [7] and, especially, 
Faber and Wing [13] record the judicious set of variable changes transforming (6.2) 
into Abel's integral equation. 

More generally: if it is determined-say, experimentally-that a visual system 
is able to most accurately associate a line with a prescribed blurred version f 
different from (6.1) (but still independent of orientation), then one can solve the 
correspondent (6.2) for the associated azimuthally symmetric sensitivity pf. 
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7. Locating Linear Borders Relative to a Usable Line Segment. The 
usable data (X1, cl), (X2, c2), X1 7# X2, is given. Let r be the unit tangent vector 
for the line segment X1X2, directed from X1 to X2; and let 6 := JJX2 - X1jj. 
Let L = L, be the unknown linear border with its normal v pointing into Q1, 
and let h be the scale for the color blurring (1.2) or (4.1). Let fv be the associated 
cumulative distribution function for v-normal lines (see (3.2), (4.2), (5.1), or (6.1)). 
Then, since the level lines for CL are parallel to L, CL varies along X1X2 in concert 
with fv: 

(7.1) c(Xi + sr) = fv (fv7 (C1) + (s/h) cos vry); 

here 1r,v, the angle from r to v, lies in [0, 27r). Taking s = 6, we obtain 

(7.2) cos tT,V = h (fvL1( 2) - fvL7(cl))/6. 

This is to be solved for its single unknown, v; and the associated line Lv is to be 
then located. 

The case that fv = f independent of M for example, that p (4.1) is azimuthally 
symmetric is instructive. Then, (7.2) has a solution if and only if 

h If'l(-2) - f-l(C0)|/6 < 1; 

and, if it has one solution, then it has precisely two (having the same values of 
COS /T,v ) unless T,Lv is 0 or x. 

More detail is seen from the geometry of solutions, which is as follows. For i = 1 
and 2, set 

(7.3a) r (v) :=h I fv- (CiZ) 1, 

and let 

(7.3b) Ci(v) be the circle of radius r.(v) centered on Xi. 

Then Lv solves (7.2) only if it is one of the lines (if any) which are simultaneously 
tangent to both Ci(v). From this, if fv = f is independent of v, the reflection of 
a solution (including its normal v) in the line containing X1X2 is also a solution. 
Moreover, then, if Xi, i = 1, 2,3, are usable and if the associated ci are, in fact, 

c(Xi) for some line, then the pair of lines solving (7.2) can be distinguished using 
the (signed) distance hf. ; (M) that the true solution is from X3 if and only if the 
three X. are not colinear. 

If the two 6i used are not known to be CL(Xi) for the same line L, then existence 
of solutions to (7.2) becomes a problem. Let us first suppose that fv = f is 
independent of v. If c = 1/2 (-f(0)) = C2, then the only two solutions are 

the line through X1X2, using either normal. Otherwise, the only possibilities for 
solutions are the lines simultaneously tangent to the two circles Ci of radius ri (now 

independent of v). The necessary orientation of a solution's normal then becomes 
determinative as follows. (1) If 6 < jr2 - rlj, then there are no possibilities or 

solutions, since the smaller disc lies inside the larger. (2) If 6 = 1r2 - r,1j, then the 

smaller is internally tangent to the larger, and there is one line constituting two 

possibilities (for the two possible normals). Now use the fact that v (if located on 
a potential solution) points away from X. if ci < 1/2, towards X. if c > 1/2, and 
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either way if cZ = 1/2. This yields: (2a) If the C- do not lie on different sides of 1/2, 
there is exactly one solution; and (2b) if the ci lie on different sides of 1/2, there 
are no solutions. (3) If Ir2 - ri < 6 < r2 + r1, then the discs' interiors overlap, 
and there are two lines representing four possibilities. Among them, (3a) If the ci- 
do not lie on different sides of 1/2, there are exactly two solutions; and (3b) if the 
ci lie on different sides of 1/2, there are no solutions. If (4) 6 = r1 + r2, the two 
circles are (externally) tangent: we have (4a) two solutions as before, but in case 
(4b) there is exactly one solution. If (4) 6 > r1 + r2, we have exactly two solutions. 

SUMMARY 7. 1. For fv = f independent of vM: If the e. lie on the same side of 
1/2, then there exists an oriented line Lv mutually tangent to the two circles (7.3) 

and solving (7.2) if and only if 6 > Jr2 - ri. If the ch lie on different sides of 1/2, 
then there is a solution if and only if 6 > r2 + r1. The mirror image of a solution 
(with its normal) in the line containing XIX2 is also a solution. 

Proposition 8.1 and Appendix 2 consider the existence question for v-dependent 

fV 
The following algorithm includes a crude but effective means of distinguishing 

between solutions when fv is independent of v. 

ALGORITHM 7.1 Given the usable data (X1, cl), (X2, C2), with 0 # |XX1 -X21 = 

0(h); take the origin to be a vertex of the square opposite its diagonal X1X2. 
Suppose first that fv is independent of v. Then 

(1) For i = 1, 2, compute a fv; (cZ) and a ha 
(2) Use Algorithm A1.2 in Appendix 1 with a := (ai,a2)T to determine the 

up to two lines L(v1, zj), if any, mutually tangent to the circles (7.3b) and 
solving (7.2). 

(3) If there are two solutions, choose, as the line LA produced by this algorithm, 
the one compatible with an unusable data pair (X3,c (X3)), with X3 not 
within 0(h) of the interior of the vertical angle containing XIX2. 

We offer no specific algorithm when fV depends on v, although a one-variable 

Newton's method could be tried on (7.2), based on (8.6) (8.8). We simply suppose 
that one can find a line LA, with normal v, satisfying (7.2)-- (7.3), i.e., (1) (3) above. 

The associated map 3: {borders fl} -* {linear borders} (given by evaluating 
the average color at X1 and X2, applying the algorithm, and defining the new 
border using LA and its normal) is a projection (since 37(3) = 3) onto the linear 
borders sufficiently near XI and X2 for both to be usable. The linear border it 
produces is the interpolant, should any exist among such linear borders, of the pair 
of functionals consisting of evaluation of the average color at the two usable points 
X1 and X2. As seen in Summary 7.1, such an interpolant need not exist for an 
arbitrary nonlinear border which is usable at X1 and X2. (The projector associated 
with the algorithm of Section 12 and the operator, of Section 11 need not yield 
interpolants of those algorithms' triples of functionals.) 

8. Stability; and Convergence to the Border. The border fi between QO 
and Q1 in (1.1) has bounded curvature and does not cross itself. Let c- be the 
average color function with scale h ((1.2) or (4.1)) of the color function c (1.1) 
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associated with QO and Q1. We assume h -- 0. Let Xf be a fixed point on d. Let 
X1 :A X2 be two usable points converging to X: at least as fast as h goes to 0; 
i.e., suppose IIXj - X011 = 0(h) with ci := c(Xj) strictly between zero and one, 
i = 1, 2 (so, in particular, 6 := IIX2 - X1 11 0(h)). Let Lo = L(vf, Z\fl) be the line 
tangent to d at Xf with normal vM pointing into 71 and at the (signed) distance Z\a 
from X1 as measured along vf. Algorithm 7.1 associates lines LA = L(v, A) with 
data sets {(Xi, CZ), i = 1, 2}. The goal for this section is to discover when v -vA 
and A\ -- Aa at rates 0(h2/6) and 0(h3/6), respectively; and when LA is within 
0(h3/6) of d throughout any neighborhood of X: of diameter 0(h). Propositions 
8.1 and 8.2 will impose further restrictions on the directions r of the line segments 
X1X2, on the c- which allow this conclusion. 

Since the average color near X: differs in a small, estimable way from the average 
color associated with two regions separated there by L: instead (Remark 8.1 below), 
and since Algorithm 7.1 reproduces lines and so would reproduce L:l from data 
taken from the latter average coloring, we begin with a stability result, for linear 
borders, against perturbations in the algorithm's data. For this we shall impose a 
modified definition of "usable" data: 

Definition 8.1. The usable numbers c(X) are "uniformly usable" means that the 
slope of fi' is bounded uniformly over the smallest interval containing them and 
for all v. 

For example: "usable" implies "uniformly usable" for (6.1), but not for (5.1) 
or (3.2), when "uniformly usable" would refer instead to numbers between usable 
limits fixed a priori say, 0.02 and 0.98. When f, = f is independent of v (Section 
7), our algorithm is clearly less stable if the two circles, determining LA by its 
mutual tangency to them, are close to mutual tangency themselves. When f, really 
depends on v, there is a different, but still "rarely" satisfied condition, determinable 
a posterior, on data pairs which can render stability near them completely opaque. 
This is part of the content of 

PROPOSITION 8.1. (Concerning the stability of Algorithm 7.1.) Let the border 
/ be a line (so that LA = L:l = 03). Suppose, for i = 1,2, that (a) - 

= cL(Xi) 
and its perturbation J- are uniformly usable, and (b) I& -ci- = O(E), E = o(1). Set 

: XZ,. Should one exist, let L = L(ii', A\) be a line yielded by Algorithm 7.1 for 
the data (Xi, i), i = 1,2. 

Suppose first that (1) f, is independent of t. Then L is unique. If sin a $ o(l), 
then L exists for hE/8 small enough, and 

(8.1) II[/ - vol = O(hE/6). 

Otherwise, should L exist, then 

(8.2) I/z - v:11 = ?(Xh6) 

In either case, 

(8.3) 1 - A,31 = O(hE) 

However, if (2) f, depends on v, then a sufficient condition for local existence 
and stability of &, i.e., i>, is the more general condition 

(8.4) cosa (e4 - _(1)')/(2 - 1) - Sill a $ 0(l), 
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where )(l) := p(a)(Ui, V), ai := fL'(ci), and ,(l')(a, v) is p's "specific first moment 
for v-normal lines," described at (8.7)-(8.8) below and presumed to have a first- 
order a-difference quotient uniformly bounded on relevant triples (al, a2, V). With 
(8.4), L exists and is unique when hE/6 is small enough; and convergence is governed 
by (8.1) and 

(8.5) 1j - Ld1 = 0(h 2/6). 

Proof. Suppose (1) f, = f is independent of v. For (8.3): the (signed) distances 
AA = A,3 of LA = L: from X1 are both hf -l (cl1); while the distance / of L from 
X1 is hf-1(a1) (7.3a) as a function of c- = cl on the interval of uniform usability. 
This function is Lipschitz continuous with constant bounded by h times the slope 
of f'l on that interval. Similarly for (8.1) and (8.2): the arccosine of the right 
side of (7.2) is likewise Lipschitz if sin a is bounded away from zero; otherwise, its 
modulus of continuity is the square root function. 

If (2) f, depends on v, we apply the implicit function theorem to (7.2) in the 
form 

(8.6) F(a, C1,C2) := cosa-h (f,(l )(C2) -fL(7 )(el))/6 = 0 (a := ZT,>), 

computing aF/Oa by invoking f-(' ) (f(,,]) (a))= a to find that 

(8.7) -af-l )/Oa = (faf(,)/0a) / (af,(,)/aIO) 

With this, and since F = 0 at the data for LQ, (8.4) includes aF/0a $ 0 there. We 
conclude existence and uniqueness of & = a(il, 62) for nearby data, for which (8.4) 
leads to (8.1). Knowing p ('), Newton's method (for one variable) could be tried on 
(8.6). With f, given by (4.2), the meaning of the associated quantities in ,(l) (a, V) 
(8.7) is clear: the denominator is the mass Mo(u. v) (see the end of Section 4) of 
the line (with linear density p) normal to Iv through the point 

(8.8) Pot> := (-avl, -av"); 

while the numerator is proportional to the first moment of that line about Pa,,, (in 
which mass points to the left of v receive the positive weights). The content of (8.4) 
is less clear in general***; except that there is a two-dimensional set in (a, cl, c2)- 
space which one must avoid in order to conclude it, and hence (8.1), when fV truly 
depends on v. The extent to which stability is destroyed near the set where (8.4) 
fails is unclear --in contrast to the situation leading to (8.2). Inverting fj, instead 
of f,,v gives (8.5). p's "specific second moment for v-normal lines" occurs in more 
precise error estimates for approximate normals (9.6) and in the determination of 
approximate curvatures (Sections 9-10). 0 

***(November, 1987) If p is constant on its support, then (8.4) holds if and only if 
cos a (Al2 - A11)/(2d) - since a$ o(1) with AlJ the difference between the lengths of the left 
and right portions of the lines Ij (8.8) and d the signed distance along v from 12 to 11. In partic- 
ular, it follows that the line produced by applying Algorithm 7.1 to the average color c (1.2) of 
two usable, interiorly disjoint h x h squares having rectangular union R - i.e., the line associated 
with DeBar's [11] algorithm (and the kernel of Youngs' [28], cf. Section 3) is stable (and so is 
locally second-order accurate for smooth curved borders when the data is "usefully usable," cf. 
Proposition 8.2). The trickiest verification is when the linear border crosses both a short and a 
long side of R. 
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We now estimate the extent to which the data, i.e., the average color c(Xi), 
i = 1, 2 (4.1) (of the coloring (1.1) associated with Qo, Q1, and /3) are perturbations 
of the values at the Xi of the average color CL. (of the coloring associated with 
(4.1) and the line L: tangent to /3 at X:, i.e., normal to v: and tangent to rQ). 
We use the linearity (in c) of the scaled convolution (4.1) and the properties of the 
scaling to find that 

(C - CL)(Xi)= ffP((( - Xi)/h) (c - CL,)(() dA(()/h2 

(8.9) - ff| p(a + x) (c - CL,)(XQ + hx) dA(x) , a := (X: -Xi)h, 

< p(a + x) IC-CL, I(Xf + hx) dA(x) 

- ff p(a + tTQ + nvof) IC - CL I (X: + h(trQ + nvfl)) dn dt 

in terms of the (scaled) tangential and normal variables (t, n). In effect, this final 
integration is over the intersection of the support Si of p(a + ) with the support 

S2 of Ic - CL (X: + h( )) (= 1 on S2). We are assuming that I I Xi0-X - (h). 
Suppose first that the support of p is bounded. Then, Si is bounded. S2 is the 

set of (t, n) such that X: + h(trT + nvfl) lies between /3 and its tangent line L:. 
Consequently, the magnitude of the nonzero limit on the inner integral is an no(t) 
such that noh = (ht)2 (lI,@/2 + 0(1)), with ti: the curvature of / at X: and with 
t bounded. So, no and, hence, the integral are 0(h) in size. This proves the first 
half of 

Remark 8.1. (The average color near a curved border as a perturbation of the 
average color of a nearby tangent half-space.) Let X:,3 be the closest point on /3 to 
Xi at which X, - Xi is orthogonal to the tangent line LQ,3 to /3 at X:,3 (with 
normal v:,3 pointing into Qj), and suppose O3's curvature is bounded. Then 

c(Xi) = CLli (Xi) + 0(h). 

But, suppose O3's curvature is differentiable. Then, with CQi the osculating circular 
disc to /3 at X:,3, with Clc, i the average color function associated with coloring CQi 
the color appropriate to v,3, and with f, the cumulative distribution function for 
v-normal lines (4.2), 

(8.10) c(X.) = Cco, i (Xi) + 0(h2) = f 3i (a) - r,3 M2,i h/2 + 0(h2), 

where the sign of c,3 is taken to be positive if /3 curves toward Q, at X ,i, where 
a01 V:= . (Xi - XQ, )/h (= ?|Xi - X,,iH,/h), and where M2,. is the second 
moment of the line with linear density p-with normal v,3 through and about 
the present analog P of the point (8.8). 

Proof. In (8.9), now, replace /3 with /, i and then LQ,3 with Cp,3. The size of the 
difference between the limits on the inner integral becomes ni (t) such that ni h is 
proportional to (ht)3. 0 

The estimate (c - CL3)(Xi) = 0(h) can hold even when the support of p is the 
entire plane. For example, suppose p is an azimuthally symmetric Gaussian. Then 
the final integral is bounded by the sum of two integrals the first from rh to x0 
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with r2 of order log(1/h2) in size; and the second, from 0 to rh. In the integrand of 
the first, bound the absolute value by one and cover all angles; the result is 0(h2) in 
size. For the second: the 0(ht2) bound on the nontrivial limit for the inner integral 
holds since ht = O(hrh) goes to zero; and one concludes the second integral is 0(h) 
in size. 

So, to ensure convergence estimable via Proposition 8.1 to the tangent line L: 
for /3 not a line, we will want the c(Xi), as perturbations ji there of CLf (Xi), to be 
uniformly usable. This motivates 

Definition 8.2. The numbers c(Xj) (and points Xi) are "usefully usable" means 
that 0(h) perturbations of the numbers c(Xj) are uniformly usable (Definition 8.1); 
more precisely, for each K > 0 there exists ho > 0 such that the numbers c(Xj)?Kh 
are uniformly usable for h < ho. 

Thus, while "usable" implied "uniformly usable" for (6.1), it does not imply 
"usefully usable". In view of the restriction placed on p at the end of Section 4, 
being between fixed limits E (> 0) and 1 - E suffices for useful usability. 

The following observation will be needed but seems evident. 
Remark 8.2. (Line-approximations to curves, in terms of the points and normals 

that define them.) Suppose (1) the plane curve /3 has bounded curvature; (2) the 
point Y approximates /3, i.e., there is some XQ(Y) in /3 so that 

IIY- X(Y)HI = O(p) - o() (p for "point"); 

and (3) the unit vector v approximates the unit normal Iv: to ,3 at XQ(Y): 

liv- VA = 0(E,) = o(1). 

Then, in any neighborhood N of Y, of diameter d = o(1), the line L through Y 
perpendicular to v satisfies 

sup x - 011 = O(Ep + dEv + d2) 
x in LnN 

If there is a second point Z on L with jjZ - XQ(Z)j = O(Ep), then 

111>-p11 ?(E')' , := min (eV, ITY- Z11 + EVIIIY-Zl) 11w - v,3hl = O(?V ), ?~: m~ IY-Zj+~jY- Zil) 
and, in any neighborhood N of YZ, of diameter d= o(=), 

sup lix - j11 = O(Ep + dv + d2). 
x in LnN 

With this, and taking e = 0(h) in Proposition 8.1 (as we may by Remark 8.1), 
we have 

PROPOSITION 8.2. (Local convergence of Algorithm 7.1's line LA to a border ,B 
having bounded curvature.) Suppose, in the context o/ this section's first paragraph, 
that (1) p (4.1) has bounded support or is an azimuthally symmetric Gaussian; 
(2) the data c(Xj) are usefully usable, i = 1, 2; and (3) if f,, is independent of v, 
then X1X2 is not nearly perpendicular to /3 locally (sin'o $& o(1)), or in general 
(8.4) holds. Then LA exists for 6 (already assumed 0(h)) # 0(h2); and with A 
(respectively, Az,) the distance from Xi to LA (respectively, LQ), 

(8.11) jjv - vdjj = 0(h2/6); and IL -A 3,- = O(h3/6) (resp., 0(h2)), 

i=1, 2 
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when f, is v-(in)dependent. Consequently, the two points of tangency of LA to its 
determining circles, namely, 

(8.12) Y := X1 - hol v, Z := X2 - hO'2 v, f v : c ) i 1 21 

satisfy IIY - XQ, II = 0(h3/6) = liZ - X:,2 11 (respectively, 0(h2)), with X3,i the 
point on d nearest to Xi and when f, is v-(in)dependent. So LA is within 0(h3/6) 
of the border /3 throughout any 0(h) neighborhood of YZ--and 0(h2) throughout 
any 0(6) neighborhood if f, is v-independent. 

To complete the analogs of the one-dimensional results mentioned at the end 
of Section 1: Similar convergence holds for other 0(h) perturbations in the E(Xi) 
part of the data (ci, Xi) such as would occur if the color c(x) being averaged were 
nonconstant in the two regions and were known with 0(h) accuracy on the support 
of p((. - X1X2)/h), and with the jump at the discontinuity not being o(1). The 
consequences of perturbations in the other part of the data, namely, the Xi, are 
similar if 11Xi - XiII = O(hU), i = 1, 2. 

If fLv is v-independent but X1X2 can become perpendicular to A (e.g., were 
sinca = 0(h)), and if h and 6 are of comparable size, then, according to Remark 
8.1 and Proposition 8.1, the local accuracies of L} and of LA (when they exist) are 
a priori 0(h1/2) and 0(h3/2), respectively and these estimates will then be sharp 
unless ,'s curvature becomes small or the two relevant specific second moments for 
v-normal lines become (fortuitously) close (cf. (9.3) if. below). We also conclude 
from Remark 8.2 and (8.11) the a posterior estimate that LA is 0 (h2 + 1IY - Z 12) 
accurate throughout any 0(IIY - Z I) neighborhood of YZ. We have nothing useful 
to conclude if fi is v-dependent but (8.4) fails. 

9. Curvature Estimates: Problems, and a Solution. Another character- 
istic of a border one might want to recover from discrete values of its blurring is its 
curvature; see, e.g., Chorin [8] for the blurring (1.2). 

Our border approximations, applied in a sequence of overlapping neighborhoods 
of diameter 0(h), could yield a broken line which is (usually) within order 0(h3/6) 
of the border B. More to the point: with each data pair (Xj, j), (Xj+1,1C+1) 
we have associated a line segment the one connecting the two points of tangency 

Yj+1/2, Zj+1/2 (8.12)---which locally approximates /3. It is natural to associate this 
segment's unit normal 

(9.1) v v: v3+l/2 with O3's normal near Xj+l/2 := (yj+l/2 + Z3+l/2)/2 

(more precisely, halfway between X,j and X,3+1 on d); and this prompts an 
estimate such as 

K13.1v: I Vj-1/2 X Vj+1/2 /Xj+ 1/2-Xj-1/21, in which U xV 

(9.2) uv2 -u2v1 is the only nontrivial component of the usual vector 
product of U and V appropriately embedded in right-handed 3- 
space, 

for the size II(d2X/ds2)(s) II =: Ic(s)j of the curvature of 13 = X(s), s being 

arclength, near the two points Xflh1 and X:l,,+l 0 on: (arnd analogous to Mjolsness 
and Swartz [21] ). 
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Unfortunately, even for smooth curvatures, this (and similar) elementary esti- 
mates do not converge in general unless the curvature is zero at limhDo X,j. We 
sketch the reason. Like for the vector product of the normals of two adjacent se- 
cant segments, the unit vector vj+1/2--regarded as approximating Ol's normal vp 
halfway between X3,j and X: j+i-is convergent, so its principal error vector is 
essentially parallel to Ol. Also, the size of this error is proportional to the scale 
h and to the smoothly varying local curvature KI,3j+l/2. However, unlike for the 
secants' normals, the error also involves a geometric factor, neither smoothly vary- 
ing nor generally o(1), depending not only on the orientation of the two points 
Xj, Xj+1 with respect to fi but also on their distances (relative to the scale h) 
from : (see (9.6)). Hence, only if the relative geometry of the tangent line and the 
three points is fixed on the h scale, will the numbers (9.2) converge and, then, 
to a fixed multiple of the local curvature. Only when this multiple is one so for 
almost no relative geometries has one the convergence desired. The remedy is 
clear: incorporate sufficiently accurate estimates of the geometric factor into the 
curvature estimate (9.2), thereby allowing the higher-order error terms to dominate. 
These observations and, so, the remedy-are the content of remarks culminating 
in Proposition 9.2. 

Remark 9.1. Let v := (cosa, sinca) and u := (sina, -cosa) so that (uv) 
constitutes a basis for a right-handed coordinate system for the plane. Suppose 
cos a = cos a + E with E = o(sin3/2 a), and define v analogously. Then 

= v + (E/ sin a) u + O(E2/ sin3 a). 

Proof. Multiply 

I sin aI = 1-(cosa + E)2 = I sin al - (E/ sin al) (cosa - E/2) + O(E2/ sin3a) 

by sgn (sin &) = sgn (sin a) for E sufficiently small. 0 
We now consider the error in Vj+112 (7.2) as an estimate of vlj+1/2, i.e., halfway 

between X: , and X: -+1 on Oi. We assume I is differentiable. Applying fvj112 

to (8.10), and since (f4112 )' (f11112(u13j)) = 1/(dfVj+ 12/d2)(a-j,) with a: =- 

0fj + 0(h) (and with fVj+ /2 (Qi) = C(Xi)), we conclude more precisely that 

(9.3) f1 2(c(X)) = (2) h (1/2+0(h)), with , (.2) = M2,jIMO,j 

the specific second moment for v-normal lines, i.e., the ratio of the second moment 
to the zeroth moment (this last being fv1j+,1+212), of the line segment with linear 
density p and normal v3+112 = v,3J+112+O(h2/ j+112), through and about the point 

Pj%,vj+ I/2 (8.8). From (7.2) and (9.3), then, and as Kicj = 8pj+1/2 (1 + ?(6j+1/2)) 
with K'3,j+1/2 the curvature halfway between X:,j and X:,f,+f, and with 6j+1/21 
llxj+l - Xjll, 

Cos 
/7j+112,Vj+112 

= (=(j+i - O4,j) h/j+ 1/2 

- I3, +l/2 (A42+) - j(2)) (h2/16b,12) (1/2 + 0(h)). 

But, in Appendix 3, we show that, if v: J+112 is O's unit normal "halfway between" 
v3j and vdi+,, then 

(9.4) (coa,1?1 - ai, ) h/6j+112 = Cos 
z7j+112, v3J+1 (1 +O1(4J?/2 '1/2)) 
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for geometrical reasons, i.e., independent of p. With this, we have proved 
Remark 9.2. Suppose O's curvature is differentiable. Let 

Oj+1/2 (Pi4+1 _ ( )/2 

be half the difference of the two appropriate specific second moments in (9.3). Then 

Cos rj+ /2.Vaj =cs= Cos rj+12,Vj+1/2 + Ej+1/2 + 0(h3/6j+112 + 6J 1/2), 

where Ej+1/2 := K,j+1/2 0j+1/2 (h2/6j+112). 
Thus, if we knew the curvature locally, we could better estimate v locally: 
Remark 9.3. Pick tj+l/2 so that (t3+1/2, vj+1/2) is a right-handed orthonormal 

basis. If vji+l /2 is given by 

VJj+1/2 V= j+l12 + I-f,j+1/2 03+1/2h2 t3+1/2/LXj+1/2, 

where L\Xj+1/2 := 8j+1/2 sin 7j+1/2 Vj+1/2 is the length of the line segment of tan- 
gency Yj+l/2Zj+l/2 (and presuming the sine nonnegative), then (compare (8.11)) 

(9.5) vj+1/2 = VJ+l/2 + 0(h316j+1/2). 

Proof. Combine Remarks 9.1 and 9.2. 0l 

As an aside, we conclude 

PROPOSITION 9. 1. (Improved error estimates for Algorithm 7.1.) Under the 
assumptions of Proposition 8.2-except that the border's curvature i is now pre- 
sumed differentiable and first-order a-difference quotients of the specific second 
moment ,(2) (a, v) (9.3) are now presumed uniformly boundedt over relevant triples 
(ala2,v) -one has IAI -A3I = 0(h2), i = 1, 2, and 

jjV - V3,3/211 = 0(h) 
(:$ o(h) unless KcJ3,3/2 = o(1) or X1X2 becomes parallel to i3). 

Consequently, the two points of tangency of LA to its determining circles, namely, 

Y:=X1-hol~v, Z:=X2-hC2v, aZ:=fL(h), i=1,2, 

tThis condition is not unduly restrictive. For example, suppose the density p (4.1) were 
constant on its support S; and suppose S were convex with a continuous, piecewise smooth 
boundary &S. Let (q, a) be the coordinates of an orthogonal coordinate system based on (t, v). 
Then 3S defines two continuous, piecewise smooth functions i? (a) on an open interval Iv of the 
a-axis; and the difference quotient of each is bounded with one possible exception, namely, when 
both ai approach the same end of Iv. Extended by continuity to Iv's closure, the graphs of q+ 
and q- may connect (their union then reproducing MS), or they may not connect (should &S 
contain a line segment perpendicular to v). In any case, the difference quotient D of A(2) is a fixed 
multiple of the difference quotient of the function q2 + q+,q_ + q2 . Hence, conditions sufficient 
for bounded D include: (a) the curvature of 3S (defined piecewise and already presumed of one 
sign) is bounded away from zero (invoke (10.2) for this should both ai get close to the same end 
of Iv), or (b) at each point of oS having zero left or right curvatures (excepting the interior 
of line segments) the tangent is discontinuous, or (c) the two ai do not simultaneously approach 
the same end of I, (possibly already a consequence of the "useful usability" assumption on the 
data). For azimuthally symmetric (but not necessarily constant) densities p, see Section 10 in 
particular, condition (c) suffices for the density (6.3). 
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satisfy IY -X0,1 11 = 0(h2) = l-Z XO,2 1j, with X0, the point on 13 nearest to Xi . 
So LA is within 0(h2) of the border fi throughout any 0(h) neighborhood of YZ. 

Proof. Use j = 1, 63/2 = 6 = jjX2 - X1 11 and similarly for r and v, and (7.2) in 
the form 

h/6 = (cos /L,,)/(a2 - 71) 

to conclude from Remark 9.3 that 

(9.6) 2 tt v - Jv3/2tt = h I 1c,3/2 (cot ,) (,(2) (2, v) - 2(2)(1, v)) /(0f2 - i) I, 

with i'(2) the second specific moment (9.3) about P,,v (8.8). Then apply (9.5), 
noting 6 : 0(h2). 0 

More importantly, we can successfully adapt various forms of curvature estimates 
which were originally designed to use the (exact) locations of three adjacent points 
on a plane curve. Such adaptation must bear three points in mind: (1) Orientation: 
dl's unit normal v:3 points into Q1, so the appropriate unit tangent tic = dX(s)/ds 
is parallel to f with Q1 to the left side of t13, and this means that the direction 
arclength s increases on fi is predetermined. (2) We shall be invoking Remark 
9.3 to obtain convergent curvature estimates, so the sign of the curvature is also 
crucial-and we have chosen it (below (8.10)) to be positive if d curves towards 
01. Thus, the (signed) curvature we shall approximate is 

(9.7) c13 := v: dt,3/ds = -to dv,3/ds. 

(3) The line segments Yj+l/2Zj+l/2 approximating fi even the pair associated 
with two "adjacent" data-pairs Xi-1, Xi and Xi, Xi+- need contain no common 
point and, if they do, it will not be an endpoint in general. Hence these segments 
will have to play a secondary role not unreasonable in view of (9.5) unless joined 
up somehow to form continuous broken lines approximating f. 

Of the four types of three-point curvature estimates (see, e.g., Mjolsness and 
Swartz [21]), we choose to adapt one there called ICx as follows: 

PROPOSITION 9.2. (A convergent local curvature estimate.) From the four 
usefully usable average colors (Definition 8.2) associated with two pairs of points 
Xo, X1 and X2, X3 -and supposing the conditions of Proposition 9.1 hold for each 
pair-determine normals V112, V512 and associated points X1/2, X5/2 midway be- 
tween the corresponding two points Yj+ 1/2, Zj+1/2 of tangency, j = 0, 2 (Proposi- 
tion 8.2). We assume XoX1 # X2X3. We also presume (without loss) that the four 
points are oriented as follows. (1) Points within pairs: for j = 0, 2, with the basis 
(tj+l/2, Vj+l/2) right-handed as in Remark 9.3, and with Tj+1/2 the unit vector from 
Xj to Xj+l, we presume Tj+1/2 - tj+l/2 > E > 0 uniformly (otherwise, relabel Xj 
and Xj+3). (2) Then the two pairs: we presume (t1/2 + t5/2) - (X5/2 - X1/2) ? 
0 (otherwise, relabel). Define 

A)s: = 1X5/2-Xl/211 and 
(9.8) 

6j+1/2 : = jjXJ+1 - Xjil, AXj+l/2 := 1lZj+l/2 - Yj+1/211i, j = 0, 2. 

Use o0, 01, and V1/2 to compute from p the specific second moments p42) and p(2) 

(9.3) about the two points Pi,V1112 (8.8); and 02, 03, and V5/2 to compute 2) and 
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p(2). Define 

(9.9) M (2) - 2))/AX5/2 - ((2) - 42)/AX1/2) (h 2/(2As)) 

(see also (10.3)-(10.5)). In general, M 7 o(1). Assume, finally, that 1 + M # o(1) 
and min(81/2,85/2)) / 0(h2). Then the approximate (signed) curvature 

(9.10) = (>1/2 X v5/2)/((1 + M)As) ( x as in (9.2)) 

admits the error bound k = k + 0(E), with 

E:= As+ h ( + (1+ ) minGhii2,8512)) 

and with kf being 3 's curvature at a point in the smallest interval (on 3) containing 
the four points X:li (on 13) closest, respectively, to Xi, i = O,. .. , 3. In particular, 
if As and min(6l/2,65/2) are both of exact order h and if 1 + M $ o(l), then 
E = 0(h). 

Proof. It follows-first from (9.6) and elementary approximation results, and 
second from (9.5) and Proposition 8.2-that, with As:3 := 11X,5/2 - X13,11211, and 
with ki the curvature halfway between X,:,112 and X:3,5/2 on , 

(9. 1l) K'f = (Vg1,2 X v>3 512)/Vsj3 + O(ASg) = (p1/2 X V5/2)/AS + E1, 
E1 = O(As + h2/As + h3/(As min(81/2, 65/2)) . 

From this, (9.8)-(9.9), Remark 9.3 (since E < 6 Tj+1/2,Vj+1/2 <i r- ), the properties 
of the vector product, and Proposition 8.2, 

(9.12) 8 = (V>l2 X V5/2)/AS-M (1 + E2) Kts +El + E22, 
E2= 0(h2/ min(AX1/2, AX5/2)) = 0(h2/ min(61/2, 65/2)) 

M is not o(1) in general (see, e.g., (10.3)-(10.5)), but 1+M : o(1) by assumption. 
Hence, from (9.10)-(9.12), 

Ik-1 ka= 1E1 + E2 - ME21 / |1 + MI = O(E1 + E2), 

and the error bound follows. 0 
Remark 9.4. One could equally well replace As (9.8) with the distance from X1/2 

to X5/2 as measured along the single-jointed, continuous broken line containing 

Y1/2ZI/2 and Y5/2Z5/2 . 
This larger but more complicated As would keep A; under better control. More- 

over, if all four aj were now zero (so that the two (2) -differences in M, and hence 
M, were zero), and if X1 = X2, then JAkl would coincide with jr, I (of Mjolsness 
and Swartz [21]) based on X0,X1, and X3. 

There are other approaches to curvature estimation which retain the general 
viewpoint of this paper. For example: it would be interesting if one of the (up to 
eight) circles mutually tangent to three neighboring small circles (7.3) proved to 
have its curvature locally convergent. 

10. Approximate Curvature Using Disc-Averaged Colors. When the 
density p (4.1) used for scaled color-averaging is azimuthally symmetric about the 
origin, the specific second moment k (2) (9.3), as well as the cumulative distribution 
function f, for v-normal lines, is independent of v and so depends only on a. In 
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particular, the specific second moment for a probability distribution p(r), r 
/x2 + y2, on the disc of diameter 1, is, for 0 < Jul < 1/2, 

(10.1) p(2) (a) = z2p a2 + z2) dz j /4 l2 2 + z2) dz. 

For example, the specific second moments for the densities associated with Sections 
5 and 6, respectively, are 

(10.2) (2))(cT) := (1/4-_ 2)/3 and Y 
(2I)(a) := (1/4 _ 2)1/2/4. 

To promote further analysis, we now relate M (9.9) to a difference approximation 
to the second derivative of a scalar function y(x) of one variable x. This particular 
approximation, a difference quotient of the difference of the slope of two secant lines, 
is expressed in terms of four values XO,... , X3 and corresponding values y : (xi) 
as 

(10.3) (, 0Y)3/2 (('9Y)5/2 - (-2Y)1/2)/Ax5/2 - x1/2), in which 

(?Y)J+/2 :=(Yj+1 - yj)/(xj+l - xi), XJ+1/2 := (xj+, + xj)/2; 

and it yields the (constant) second derivative of quadratic functions y(x) while 
reducing to the ordinary second difference quotient if xi = X2 and Yi = Y2. Now, 
under the assumptions of Proposition 9.2, from (7.2), and for j = 0, 2, 

(10.4) IAXj+1/2 =6j+1/2sin aj+1/2 and 
O'j+l-cj =(6j+1/2/h)COS ej+1/2; 

Cj+ 112 := I-j+ 1/2,Vj+ 1/2 

being in [e, w - e]. Consequently, M (9.9) is also given by 

(10.5) M = (h/2) ((Ru(2) )5/2 cot ck5/2 - ( 1,u(2))1/2 cot a 1/2)/,\s. 

In particular, it works out that, 

when the segments XOX1 and X2X3 lie in the same line, M = 
(10.6) ((2IL(2))3/2(cotai12)2/2 + O(h2/min(61/2,65/2)) = o(1) if this 

line becomes parallel to /. 

The first or second difference quotients required in (10.5) or (10.6) are easily cal- 

culated for quadratic functions like ,u(2) (10.2)-and would be particularly simple 
for ,(2) linear: 

PROPOSITION 10 . 1 . Let pc (r) (c for "curvature") be a probability distribution 
on the disc of diameter one solving (10.7) below, so that its specific second moment, 
for v-normal lines, is piecewise linear as described by 

A(2) (0) =- alla + b, 0 < Jul < 1/2. 

Then, under the hypotheses of Proposition 9.2, with the further restriction if a $& 0 
that a0a1 > 0 and a2a3 > 0, M (9.9) is given by 

M = (ah/2) (sgn o2 cot a5/2 - sgn ao cot e112 /As, 

ej'+112 := 
1rj+12,2Vj+112' 

In particular, if a = 0, or if the signs of a0,...3 
all agree and the segments XOX, and X2X3 lie in the same line, then M = 

0(h 2 /min(61/2,65/2)), so that then 

k = 
(v112 x V5/2)/LAs 

itself now converges to the local curvature as described in that proposition. 
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(2) thre is (2) Thsi Proof. We must solve (10.1) for p = Pc, given that y(2) there is ,i2). This is 
equivalent to 

(10.7a) I(of) Pc( 2+z2)fdz= (2+Z2)P + dz, 

with -q(o) (2)(a) + a2. The changes of variables (see, e.g., Faber and Wing 
[13]), which converted (6.2) to Abel's integral equation, transform (10.7a) into 

,?(V~1-) PC ( IV_ 4~) d y/\/x - 

(10.7b) Jo 

= f (1/4-Y)3/Pc( 1/4(-)dy/ 

Unfortunately, we have failed to solve either of these functional equations and even 
to show when solutions exist. 

11. Border Approximation Using a Widely-Based Approximate Nor- 
mal. Up to this point we have been intent on abstracting as much knowledge as 
possible from a minimal amount of data, namely, from the (usefully usable) values 
of the average color function at two locations. In the next two sections we propose 
algorithms, yielding lines approximating the border / locally (i.e., in neighborhoods 
of diameter 0(h)), which involve redundant data instead namely, its usefully us- 
able values at three locations. 

The unit normal v of a line L, must be convergent to the border's local normal 
if L, is to be better than first-order accurate in its local length, and v must be 
first-order accurate if L, is second-order accurate locally. One way to insure this, 
given a usefully usable (Definition 8.2) point Y, is to let v) be the normal to Z1Z2 
pointing into Q1, with usefully usable Z1 and Z2 chosen (a) within O(Vfih) of Y, and 
so that (b) IIZ2 -Zi is exactly of order vIh; for then iv is o(v/h) accurate locally. 
Better yet, if such Z1 and Z2 are chosen so that (c) the projection of Y, along 1', 
onto Z1Z2 is within 0(h) of the midpoint of Z1Z2, then v' can be used to determine 
a v which is locally 0(h) accurate. This is the basis for the only algorithm we offer, 
not requiring iteration when f, depends upon v: 

ALGORITHM 11.1. With Y, Z1, Z2, and iv satisfying (a)-(c), and with f, (4.2) 
the cumulative distribution function for v-normal lines associated with p (4.1), let 

(11.1) Wi := Zi - hf-'1(c(Zi))iC, i = 1,2. 

With v the unit normal to W1W2 pointing into Q1, set 

(11.2) X = Y - hfv 1 (c(Y))v. 

The line LA through X perpendicular to v is the local approximation to f?. 

Remarks 11.1. (1) For n dimensions, suitably restricted densities p (Appendix 1), 
and with all points mentioned being usefully usable: one could find a nondegenerate 
(cf. Section 12) simplex Z1 ... Z, having its ordinary center of mass appropriately 
close to Y's projection along its normal iv. Easier to implement would be the 
use of n uniformly independent line segments Zl,,Z2,3, the midpoint of each being 
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appropriately close to Y's orthogonal projection on it. (2) As with Algorithm 7.1 (cf. 
Section 9), precise error estimates for v will contain first-order terms involving the 
local curvature and specific second moments of appropriate line segments. Hence, 
curvature estimates equivalent to the ordinary use of adjacently-determined normals 
would again be bounded but unlikely to converge, while an appropriately adapted 
version of Proposition 9.2 would yield convergent local curvature estimates. (3) 
Unlike Algorithm 7.1, the linear border produced is not an interpolant-in the 
sense that it need not yield the data. This allows, for example, the existence of the 
line LA, even when f, is independent of vi but the data varies too rapidly to be 
yielded by any linear border. (4) The associated operator is not a projector. 

PROPOSITION 1 1 . 1. (Convergence of Algorithm 11.1.). Suppose the border / 
is thrice differentiable, and that p either has compact support or is an azimuthally 
symmetric Gaussian. Then X lies within 0(h2) of fi, and the line LA lies within 
0(h2) of 3 throughout any 0(h)-size neighborhood of X. 

Sketch of Proof. Set E := /h. In view of (8.10) and the boundedness of (f 
on usefully usable data, it follows from (a)-(c) that Z1Z2 is an 0(h) = o(E2) 

perturbation of Zl,flZ2,3, with Z1,3 (resp., Z2,3) the closest point on 3 to Zi (resp., 
Z2), the line segments having length of exact order E. As the projection of Y, 
along v/, onto Zl,3Z2,3 is within O(E2) of the midpoints of either segment, and 
as / is thrice differentiable, the normal to Zl,,Z2,: is O(E2) accurate locally, i.e., 
in an o(E2) = 0(h) neighborhood of Y. Unfortunately, v/ is only O(E) accurate 
locally (unless, fortuitously, ci(Z1) = c(Z2) + o(1)). However, each Wi is within 
0(h3/2) = Q(E3) of its corresponding Zi,:, whence v is o(E2) = 0(h) accurate 
locally. These accuracies for the Wi and, so, v--and consequent 0(h2) accuracy 
for X follow from (8.10), (7.2), and the boundedness of (f -)1)' on usefully usable 
average colors. El 

It is true that the component of v/ normal to / is 0(h) accurate locally. For 
any such v/, and if fV were independent of v one could then skip (11.1), use v/ for 
v in (11.2), and would find that X would be within 0(h2) of /. But, one could 
not then move parallel to Z1Z2 more than 0(h3/2) without losing second-order 
accuracy. However, one could go on to a usefully usable neighbor Y within 0(h) 
of Y, compute the corresponding X (without altering v/), and the line containing 
both X and X would be 0(h2 + iJX - X112) accurate throughout any 0(IIX - XIJ) 
neighborhood of X and X (Remark 8.2). But, this seems relatively complicated 
compared to the application of Algorithm 7.1 under the same conditions---at least, 
when that algorithm has a solution. 

12. Border Approximation Using a Locally-Based Approximate Nor- 
mal. In this section we develop an algorithm involving the usefully usable values 
of the average color at three adjacent, but strictly noncolinear, locations. It is 
founded on the fact that, if the border were a line normal to v, then the function 
fy 1 (C(.)) would be linear on any usable region. Like Algorithm 7.1, it (1) requires 
that one solve equations f,,(-) = c(Xi) for a- (with f, the cumulative distribution 
function for v-normal lines), (2) will require iteration if f, indeed depends on v 
but then is not known to have a solution for all data not froii linear borders, and 
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(3) reproduces linear borders and yields second-order convergence under appropri- 
ate conditions. Unlike Algorithm 7.1, it (4) needs no determination of lines tangent 
to circles, (5) requires that X1X2X3 not degenerate-that the ratio of the diameters 
of its circumscribed to inscribed circles be bounded above so that Algorithms 7.1 
or 11.1 may still be needed for certain orientations of the border in practice, and 
(6) reduces exactly to the use of linear interpolation of three usefully usable average 
colors when they are yielded by the specially sensitive circle of Section 6. 

ALGORITHM 12. 1. (Using a locally based approximate normal.) Given three 

usefully usable points X1, X2, and X3 (Definition 8.2) within 0(h) of each other (h 

the scale in the blurring (4.1)), labeled so that c-(Xi) =: c-i is monotone increasing 

with i, and with X1X2X3 not degenerate, 

(1) Determine a unit normal v as follows. If two c-i are equal, v is normal to 

the corresponding line segment and points towards the side of increasing c 

as indicated by the third value. Otherwise, define c (c-l + - )/2. Suppose 

first that c-2 < c-. If f, (3.2), (4.2), (5.1), or (6.1) depends on v, choose v0 

halfway between the two tangents to X1X3 and X2X3 directed towards 

X3. Compute ov := f,-1 (C-), i = 1, 2, 3, and a: fvo1'(e). For j = 1, 2, set 

W. = (0f3 -)/(&3 -uj), and Yj := WjXj + (1- Wj)X3. 

If f, is independent of v, set v to the unit normal vl for Y1 Y2 pointing to the 

side containing X3. Otherwise, use v0 and vl to initiate a (here unspecified) 
(k) (k) I(oo) iterative procedure intended to produce vk `k v -i =: v. If c2 > c- 

work similarly with X1X2 and X1X3 (instead of with X2X3 and X1X3). 

(2) With Am a ov of smallest magnitude, set X := Xm - hm v. 

(3) The line LA through X perpendicular to v is the local approximation to 

the border. 

The generalization to n dimensions is evident. Remarks 11.1 (2)-(3) also apply. 

We now discuss convergence when diam(X1X2X3 ) and h are the same order in 

size: 

PROPOSITION 12. 1. (Convergence of Algorithm 12.1.) Suppose (1) the border 
fi has bounded curvature; (2) p (4.1) either has compact support or is an azimuthally 
symmetric Gaussian; (3) X1X2X3 is not degenerate and has diameter the same 
order in size as h; and (4) e(Xi) is usefully usable (Definition 8.2), i = 1, 2, 3. 

If f, is independent of v, let v be the normal produced by Algorithm 12.1. 
If f, actually depends on v: we shall be content with sketching the applica- 

tion of the implicit function theorem to the present context, guided by its detailed 
application to Algorithm 7.1 in Proposition 8.1. The equation 

(12.1) F(c ,i C2, C-3) = G(ce, f(' )(Cl), fV(1 j(C2), fV(o )(c3)) = 0 

determining the angle a that the normal to Y1Y2 makes with, say, a coordinate axis, 
is satisfied, for any linear border L which is usable at the three Xi, by the angle L 
makes and its average colors 6L(Xi). So, suppose (5) there is a local tangent line L,, 3 

to / such that hypotheses sufficient for the implicit function theorem are satisfied 
at the usable data for Lou; specifically, suppose F = 0, 9F/ic-i = 0(1), Z = 1, 2, 3, 
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and OF/Oa # o(1) there---this last now involves four specific first moments (8.7)- 
(8.8) of p. As for / 's data, suppose (6) that the iteration has converged to yield the 
normal v = v(a) associated with the unique solution to F(cx,.) = 0 which exists in 
view of (5) and Remark 8.1 for h small enough. 

Then X lies within 0(h2) of f3, and the line LA lies within 0(h2) of f throughout 
any 0(h)-size neighborhood of X. 

Proof. By Remark 8.1, the data, i.e., the three average colors c- provided, are 
0(h) perturbations of the usefully usable average colors & associated with a line 

L,, whose point of tangency to / is within 0(h) of X1X2X3. 

If f, depends on v, (5) and (6) imply v within 0(h) of v:. X (and, locally, LA) 

lies within 0(h2) of / because of this accuracy of v, the boundedness of (fj'1) 
near the usefully usable datum - and Remark 8.1. Knowing DF/0a suggests 
Newton's method for (12.1). 

Suppose fL = f independent of v. Then we can be more explicit. It suffices, as 
above, to show v within 0(h) of v:3. The Algorithm now associates L,,: uniquely 
with the perturbed data j. Because of the positivity and boundedness of (f -1) 
on usefully usable data, the ui and a- exist uniquely and are 0(h) perturbations of 
the corresponding (unique) quantities ai and a5 associated with L,,; and each Yi 
and Yi is a convex combination. 

As X1X2X3 has diameter of order h in size and is not degenerate by our defini- 
tion, its interior angles are bounded away from 0 and wr and its edges are exactly of 
order h in length. Because the Xi are ordered as in the Algorithm and because the tj 
are usefully usable, we see from (7.2) that &3 : ji + o(1) and that cos Z ( X1X3, v:) 
is bounded away from zero. We assume without loss that j2 < (C1 + C3)/2 =: C. 

Then, in the same fashion, cos Z (X2X3, v:) is also bounded away from zero. 

If c2 and c2 lie on the same side of the respective averages c and c, it follows that 
the denominators of both weights Cv and, hence, both w. are bounded away from 
zero, so each wj = wj + 0(h). If they do not, then 62 and c2 and the two averages 
are all within 0(h) of each other, so are all separated by order 1 from the average 
colors of X1 and X3. It follows, in either case, that each Yi = Yi + 0(h2). 

It remains to show that v is an 0(h) perturbation of vd. For this, it now suffices 
that II2- Y1iI # o(h). But, as the average c is not within o(1) of either El or C3, 
neither Y1 nor Y2 are within o(h) of either X1 or X3. Thus, since X1X2X3 is not 
degenerate, IIY1' - Y211 o(h). El 

It is worth mentioning how the plausibility for the case when f, depends on v 
is improved by the success of argument when it does not This is based on the fact 
that, while F(a, xl, x2, x3) (12.1) clearly changes its functional form from one case 
to the other, G(a, Y1, Y2, y3) does not. The argument for v-independent f, indicates 
success when y y (x2) for a variety of functions y; so it lends credibility to success 
when y2 = y(x-, a) with Dy/Ox not particularly different from successful dy/dx. 
The principal change in this more complex case is the additional contributions 
of the function Dy/D9a to the requirement OF/Da $ 7 0; and this indicates it may 
be necessary to avoid lower-dimensional sets in (a,Xl, x2, x3)-space in this more 
complex case--just as in Proposition 8.1. 
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13. Hydrodynamics Briefly Revisited. If the transport equation for the 
color had constant coefficients, then the spatial average (4.1), of a solution c to the 
pure initial value problem, would also solve that problem (as the convolution then 
commutes with the differential operator). This is no longer true if the equation has 
variable coefficients which, in this context, involve the local fluid velocity, since the 
convolution of a solution then satisfies a differential equation with additional terms 
of lower order. 

Moreover, the transport of the average color c- (4.1) is presumably done nu- 
merically, with a spatial grid of size, say, 6. If 6 and the scale h in (4.1) are of 
comparable size, frequency components (of the color c of two regions) that change 
sign at nearly every mesh point may not be reduced by (4.1) enough for their mis- 
handling by the difference scheme to be irrelevant to subsequent 0(62) accurate 
border reconstruction. For example, although the interval-averaging of Section 1 
annihilates the highest frequency representable on the mesh, it does not signifi- 
cantly reduce the frequency which changes sign at every fourth meshpoint; so the 
amount of that frequency in c there remains of order 6, i.e., of order h. Such high 
frequencies are particularly difficult to treat accurately en masse with locally based 
numerical transport equations whose action is independent of the discontinuity-in 
particular, such frequencies then move at speeds whose error is at best bounded. 
So, errors exceeding the order h errors required for 0(h2) = 0(62) accurate border 
reconstruction could conceivably accumulate quickly. To maintain better-than- 
first-order (in 6) reconstruction longer, one might let 6 be o(h). On the other hand, 
unless h = 0(61/2), the accuracy of the reconstructed border would be first-order in 
6 at best (Proposition 9.1). It may take a good deal more thought and, globally- 
or discontinuity-based numerical transport to effectively resolve such practical 
matters. 

In some computational hydrodynamics contexts, the spatial domain is tessellated 
with noncongruent cells whose average colors are then used for border reconstruc- 
tion. We make a brief comment concerning the probability of the o(h) accuracy of 
such reconstruction at the end of Appendix 1. 

Finally, two observations are in order: (1) Although our work can contribute to 
hydrodynamic schemes having improved truncation error, it does so with a stencil 
which can be different from present algorithms, and this could lead to different 
stability problems. Moreover, (2) although higher-order truncation can suffice for 
higher-order convergence (assuming stability and a linear problem), it is not nec- 
essary in some contexts; see, e.g., Kreiss, Manteuffel, Swartz, Wendroff, and White 
[20] for the context of ordinary differential equations (with some reference to partial 
differential equations), or the finite element literature concerning "lumped mass" 
schemes. 

Appendix 1. n Dimensions. It is worth extending three of the concepts 
previously considered to n dimensions. The first extension concerns the contents 
of Section 4. 

Assume one is given a probability density p now defined on n-dimensional Eu- 
clidean space En. Define the "average color" of a color function c to be the scaled 
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convolution 

(A1.1) c(x) f p(( -x)/h) c() dn /hn; 
En 

it bears the scale h as a parameter. Associated with p is its cumulative distribution 
function for v-normal hyperplanes 

(A1.2) f (a) := f J p(sv + xni) d x ds, 

in which xn-1 is restricted to H(v), the (n - 1)-dimensional hyperplane through 
the origin with unit normal Iv. When the border is a linear border H = H, v 
points into Q1-i.e., towards that side of H where c = 1-so that still, as above 
(3.1), CH(x) = f,(a), with har, the signed distance from H to x as measured along 
v, being negative for x in ?O and nonnegative, otherwise. Concerning the present 
analog of (3.1) itself: for H = H., to coincide with c-- (fL,(O)) (and not be just a 
proper subset), one must assume that fL is strictly monotone at ar = 0. We shall, 
in fact, impose a stronger extension of this: Let MO(u, vi) := (ofr/Ou)(o(, iv) be the 
mass of the hyperplane (induced by the restriction to it of p) which is normal to v 
and passes through the point (-uvl,..., -uvn). Then we assume, for each v, that 
the interior of the support of MO(- , v) is a nontrivial interval which contains 0 and 
on which Mot( , v) is positive. In particular, then, fL,(0) > 0; and f, (0) = 1/2 if p 
is symmetric under reflection through the origin. 

This last points out that the origin can be placed at a special point in some (but 
not all) mass distributions so that every hyperplane through the origin divides the 
distribution into two pieces of equal mass. The analog of (3.1) is complete for such 
distributions when the origin is so placed-in that, then, H = c-1(1/2). Further 
discussion of such halfway points for mass distributions will be found in Beyer and 
Swartz [1]. 

As a practical example of a cumulative distribution function (A1.2) for v-normal 
hyperplanes, we outline in Appendix 4 an algorithm to compute the nth degree 
polynomial spline function which is the distribution function associated with a 
union (presumed to have unit mass) of n-dimensional, individually homogeneous 
tetrahedra (simplices) having nonoverlapping interiors. 

Next we derive the integral equation for the azimuthally symmetric density Pn (r), 
r := a/?. ? + n, on the n-ball of diameter one which yields (6.1) as the now 
v-independent cumulative distribution function (A1.2) for v-normal hyperplanes of 
dimension n - 1. Let Sk(() : 27rk/2fk-l/F(k/2) be the (k - 1)-measure of the 
surface of the k-ball of radius (. Then Pn is now related to the rate of change of f 
as follows: For 0 < ar < 1/2 (and compare (6.2)) 

(df/do)(cr) = 1 = j Pn ( Va e2+ 2 ) nfin ( c2 - (z2 ) dz. 

Hence, from (6.3), pn(r) := 2/(7rSn1(r) /1/4 -r2) - 2p(r)/Sn_1(r) has the 

same type of singularity at the outer surface of the ball that p had in Section 6. 

Next, we briefly consider the classification of (n - 1)-dimiensional hyperplanes 
(henceforth, simply "hyperplanes") simultaneously tangent to n balls in n-space, 
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assuming their centers determine a unique hyperplane--but supply a bit more de- 
tail only for the potentially practical case n = 3. Algorithms determining such 
hyperplanes are also proposed. 

For n = 2 (Section 7) the above assumption eliminated the case of concentric 
discs and the accompanying possibility of infinitely many mutually tangent lines 
when the radii were equal. Moreover, there were then from zero to four mutually 
tangent lines- and each was the reflection of another in the line Lo which contains 
the segment X1X2 joining the two centers. 

Some of this remains true for n-balls with centers X1, .. . , X7-, and corresponding 
radii rl, . . . , r7,. Thus, the reflection of a mutually tangent hyperplane in the hyper- 
plane Ho determined by the convex hull X1 ... Xn of X1, . , Xn is also mutually 
tangent. But, there can be at least 2' distinct solutions, as is exemplified for n - 3 
by placing the 1-, 2-, and 3-balls at the corners of the rack---whence the surface of 
the pool table is one solution; there is one solution under the 1-ball and the 2-ball 
but over the 3-ball; and, two more like it by symmetry; and the reflection of these 
four solutions in the plane of the balls' centers gives the total of 8 solutions. 

There can be fewer, however--from 7 down to none. As the 3-ball rolls to 
become tangent to the circular cylinder C12 between its circles of tangency with 
the 1- and 2-balls, a pair of solutions coalesce (7). As the 2-ball rolls through C12 to 
become tangent to the similar cylinder C13 containing the 1- and 3-balls, another 
pair coalesce (6). And the third pair coalesce when each ball is tangent to the 
cylinder C23 containing the other two (5). In each of these situations, if the rolling 
ball moves inside the cylinder it is approaching, the coalescent pair disappears (6 
differently, 5 differently, etc.) until one is left with only the 2 parallel to the table. 
Other situations result when X1X2X3 is a right triangle. Reducing, now, the radius 
of the 3-ball, one has the following example of exactly 1 mutually tangent plane: 
let the smaller 3-ball (a) lie on the same side of both the 1- and 2-balls and (bi) be 
internally tangent to C12. And, there are 0 mutually tangent planes if, instead, 
(b2) the closure of this smaller 3-ball is contained in the interior of C12. 

The 2' distinct hyperplanes mutually tangent to n balls in n-space is exemplified 
by X1 ... Xn being a regular tetrahedron (simplex) in the hyperplane x" = 0; equal 
and sufficiently small radii for the balls; with the tangency for the ith ball occurring 
either for xa, > 0 or xa, < 0, and this last being independent of such locations on 
the other balls. 

That there are at most 2n-k distinct hyperplanes tangent to n balls in n-space 
when (a) the centers X1, . . , Xn, determine a unique hyperplane, and (b) exactly 
k of the corresponding radii rl, . . . , rn are zero, follows from the character of an 
algorithm one may use to find the planes. The equation for the points y in a 
hyperplane in terms of its unit normal Iv and its signed distance A (measured along 
v with its foot resting on the hyperplane) from some origin---which we now take to 
be the mean of the Xi's: 0 = (Xi + * + Xn)/n --is 

(A1.3) (y + A v)Tv - 0. 

Consequently, with X the n x n matrix whose jth column is Xj, assumption 
(a) above means that the system to be solved for the pair (ivo, AO) associated 
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with the hyperplane determined by the balls' centers, namely 

(A1.4) XT VO = O, vT v=1, (Ao = ?) 

has exactly one solution (modulo vo's sign). Moreover, since the origin is the 
average, the span of 1 : (1, . . ., 1)T is the nullspace of X and hence is the set of 
vectors orthogonal to the range of XT. Consider the QR decomposition of XT (cf. 
Golub and Van Loan [15]): There is a permutation matrix P such that XTP = QR 
where Q has orthonormal columns and R is upper triangular. Since by assumption 
X has rank nr-I, the typical QR computer code will yield P, the first nr-1 columns 
of Q, and R (with its first n - 1 diagonal elements nonzero). We know, however, 
that the last column of Q is Q, - 1/1fi. Then the solution to (A1.4), i.e., to 
QRPTVo - 0, is found by 

(A 1. 5) (M'O) n f= 1, Ri'O = 0 O :i= JO/II1 III O i= Pro 

via a simple backsolve. The unit vector vo now spans the nullspace of XT. 

To continue development of the algorithm: A point Xi is at the signed distance 
ai (measured, like A\ was, along Iv) from a hyperplane (A1.3) if and only if Xi v + 
ai + A\ = 0 (independent of the origin's location). Hence, with 

a :_ (?rl, . .., ?rn )T 

the given n-vector of signed distances, the pairs (Iv, A) associated with the desired 
mutually tangent hyperplanes coincide with the solution set of the n + 1 equations 

(A1.6) XTv = -(a + \ 1) = QRPTv, vT V = 1. 

No solution need exist; but if one does, then at most two do; and each can be found 
as follows. Since 1 spans the orthogonal complement of the range of XT, set 

(A 1.7) A\ :=-aT1/V/_n, 

so that a + A 1 is in the range of XT. Let Rt be R with its last row and column 
truncated, so that Rt is (n - 1) x (n - 1), upper triangular, anrd nonsingular. 
Multiplying (A1.6) by QT, one sees it appropriate to solve 

(A 1 8) Rt is = (QT a, .., QT1 la)T 

for the (n - 1)-vector iv; and, finally, to find the unit n-vector 

(Al.9) V := _ yVO + p(JT0, )T 

by first solving the necessary quadratic equation (pTV)T(pTV) -1 0, i.e., 

(Al.10) 
2 + 2((V~T 0),JO) 

_ + ( - 
T 1 = 0, 

for 'y. We will have found the (at most two) solutions of (A1.6) to the extent that 
(Al.10) has real solutions -y. This completes 

ALGORITHM A 1. 1. (For hyperplanes simultaneously tangent to n balls in n- 
space, the jth ball with center Xi and radius r3, and assuming that X1 +. +Xrn = 
0 with dirn (span (X,... ,Xn)) = n - 1.) (T. Manteuffel, Los Alamos National 

Laboratory). 

(1) With X := (X, ... ,Xn), decompose XTP - QR, yielding the perimuta- 
tion matrix F, orthonormal columns Q1. ,Qn-Q , and upper triangular 
R having rank n - I and last row zero. 
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(2) Solve (A1.4) via (A1.5), yielding unit vectors ij% and vo. 
(3) With 1 := (1, ...,I 1)T and for each vector a := (?rl,. .., Irn)T of signed 

distances, solve (A1.6) via (A1.7)-(A1.10), yielding at most two pairs 
(Ii, A), and thus at most two associated hyperplanes (A1.3) tangent to 
the n balls at signed distance aj from Xj, j = 1,... ,n, as measured along 
V. 

There are 2n-k distinct possibilities here for a if exactly k of the radii r. are zero, 
and the quadratic equation (A1.10) yields another factor of two for the number of 
possible solutions (iv, A\). But, each hyperplane has two normals; so the desired 
conclusion of at most 2n-k possible hyperplanes follows. 

If it is known that the balls' centers X1, . . , Xn comprise a linearly independent 
set of vectors, then an apparently simpler algorithm to solve (A1.6) its first and 
final equalities being independent of the origin's location can be set down. (This 
is the case in the typical application contemplated in this paper, when the XJ 
would be n of the 2' vertices of an n-cube, so that one could pick, as the origin 
X0 = 0, one of the other vertices of that n-cube. This choice for X0 is not arbitrary 
unless n = 2, since n + 1 vertices can lie in a hyperplane for n > 2. However, it 
is a relatively easy choice to make if n = 3. Alternatively for n = 3, one could 
move the mean by the vector product nonzero by assumption (a) but suitably 
normalized- of a pair of differences.) 

ALGORITHM A 1.2. (For hyperplanes simultaneously tangent to n balls in 
n-space as before, except that Xi,... . ,X7 are known to be linearly independent 
vectors.) 

(1) With X, a, and 1 as in Algorithm A1.1, find b and q such that XTb = -a 
and XTq = -1. 

(2) Solve the quadratic equation 

(qTq) A2 + 2(qTb) A + (bTb) - 1 = 0 for A\. 

(3) For each real A\, set v = b + A q. 

The circumstances under which there exist no solutions seem clear, at least for 
n = 3. First, there exists no solution if one closed ball is in the interior of another. 
Otherwise, for any two balls with centers X1 and X2, let Text be the (doubly) 
infinite cone (or cylinder) of mutually tangent lines whose vertex does not lie on 
the segment X1X2. Text divides 3-space into three open, connected components, 
of which two are convex cones unless the radii are the same when, as on the pool 
table, the two open convex cones become the interior of a cylinder. Similarly, let 
Tint be the doubly infinite cone (it may be a plane or may not exist) of mutually 
tangent lines whose vertex lies on the segment X1X2; it defines two more open 
convex cones when it exists. The original two open cones (or cylinder), or their 
intersection with the second pair of cones when available, yields one (usually two) 
open convex body(s). There will exist no mutually tangent planes to a third ball if 
and only if its closure is contained in either of these body(s). 

As is true for the analog in two dimensions, the distance of a plane from four 
noncoplanar points usually determines it; but, given also four arbitrary distances, 
there will generally not exist a corresponding plane. 
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Finally, should the probability density p or the scale h used in the blurring vary 
from data point Xi to data point Xj (for example, in the context described in 
Section 13), our algorithms can continue to make sense. For Algorithm 7.1 in its 
n-dimensional form: For each i let pit() be a probability distribution and hi > 0 be 
a scale. Then, for each fixed normal Iv, the level surfaces for the average coloring 

Ci,H,,o of a half space A, bordered by the hyperplane H,,o through the origin, are 
still hyperplanes parallel to H1,,O, since (from (A1.1)) 

(A1.11) CiH(,occ) = J Pi((- x)/hi) d h /hi = (u), 

with uf = x v/hi the signed distance from Ho,1, to x scaled by hi, and with fi,,, the 
cumulative distribution function (A1.2), under pi, for v-normal hyperplanes. So, if 
ci := cH,(Xi), i = 1,.. ., In, are n usable values of the average color, the ith under 

pi with scale hi, of a half-space bordered by H.,, then the distance of Xi from H., is 
ri (v) := hi fl(ci) I (compare (7.3a)). Hence, H1, is again simultaneously tangent 
to n balls, now of radii ri (i),... , I rn (), centered, respectively, on X.... ,Xn. It 

follows that Algorithms A1.1 and A1.2 could be useful in an iteration to determine 
v and H. in the n-dimensional analog of Algorithm 7.1. 

We expect that the proofs of local existence, stability, and o( max(h ,...*, hn)) 
convergence in Sections 8 and 9 (for n = 2) will generalize for such densities pi and 
scales hi. For example, consider the stability result, Proposition 8.1. The analog of 

(8.6) is now 

(A1.12) F(a, c, 2) := cos a- (h2 f ) (2) -hi f7(^)(Cl))/3 =0, 

so that, using (8.7), the condition via the implicit function theorem for the existence, 
uniqueness, and uniform stability of a = a(a1, 62) solving this near a solution 

(do, Cl, c2) is that 

(A1. 13) OF/da = (h2 l)- hi p(1))/6 - sin a + o(l), 

in which p : (vi, v), with p (a, v) again being Pi's specific first moment 
for v-normal lines about Pa,1, (8.7)-(8.8), and with vi := fQl(c4i). The analog of 
(8.4) is (from (A1.12) and assuming h2u2 # hial 

(A1.14) cos a (h21l4') - hi ,4('))/(h252 - hiol) - sin a $& o(1). 

The analog of Algorithm 11.1 involving now three points Z1, Z2, and Z3 := Y 
with their three associated cumulative distributions fi,,, and scales hi should not 
only work (using hi f71 for h f;1 there as appropriate) but also converge as in 
Section 11 if the three scales are of comparable small size. 

Algorithm 12.1 extends as follows: The three average colors C-i (with asso- 
ciated cumulative distributions fi,,, and scales hi) may no longer order the Xi 
appropriately but (having picked an initial normal vo) the values ri h o, with 
vi := ,L7J0(ei), still do. We shall suppose that not all three ri have the same sign 
and that the magnitude of the singleton is not much smaller than that of its largest 
opposite number. Then, for the singleton and one of its two opposite numbers: 
compute the weight for linearly interpolating 0 between the two associated fi, and 
use it to interpolate linearly between the two corresponding X., thereby obtaining 
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Y1. Next, use the other to similarly obtain Y2 and let vi be the unit normal for the 
segment Y1Y2. Iterate as necessary to converge on v. The line now containing Y1 Y2 
is the approximate border LA associated with the extension of Algorithm 12.1. 

The original version of this work (Swartz [24] ) anticipated o(h) accuracy only 
for densities p,(() which varied smoothly from x = Xi to x = Xj (uniformly in h 
and 3); but it is now (May, 1988) clear, in view of (A1.12)-(A1.14), that smoothness 
is not necessary. 

Appendix 2. Locating Linear Borders Relative to Two Usable Points: 
General f,. When the cumulative distribution function f, for v-normal lines (4.2) 
actually depends on Iv, an important practical problem is the existence of solutions 
to (7.2) when the usable data (Xi, c-) and (X2, c2), X1 5 X2, is not known in 
advance to be associated with some line.tt Proof will be provided momentarily 
that either of the following conditions suffice for existence: 

(A2.1) sup I(f,17( 2) - fvl(ci) < 6?/h, 
L} 

or 

(A2.2) IC2- -11/min nuin (Dfv)(a) < 6/h, 
v a usable 

where Df, ,(a) is the amount of the density p on the line L, at a (signed) distance 
a from the origin. (If min(Df,) is too small, then the meaning of "usable" can be 
changed throughout-- to be that associated with values of c being in [?, 1 - E], some 
suitable 0 < E < 1/2.) 

Other sufficient conditions can be given, especially if more is known about p 
and the data. For example, if p is symmetric under reflection through the origin, 
then, for each Iv, the graph of f, is symmetric under reflection through (0,1/2). 
If, also for each Iv, the amount of p on L, does riot increase as the distance 1o1 of 
L, from the origin increases (as it would if p were constant on its support, and 
that support were both symmetric through the origin and convex), then a sufficient 
condition for existence for usable data embracing 1/2, i.e., satisfying c1 < 1/2 < C2 
or c2 < 1/2 <? C, would be 

(A2.3) d Jc2-c1 I < ?/h; 

here d is the supremum (over Iv) of the diameter of the set of usable arguments a 
for f, (The slope of a secant line for any such fv, with fv(ao) < 1/2 < fv(a2) and 
aJ1 < a2, is not less than 1/d; and the case cl = 1/2 = c2 is trivial.) 

In particular, (A2.3) is sufficient for the blurring associated with the average 
color of a mesh square in Sections 1 3. Hence, if three usable vertices of a mesh 

ttWhen the average colors are both 1/2, existence is given by the "ham-sandwich theorem" 
of Steinhaus, which concerns the simultaneous bisection of two measurable sets by a line. For 
prescribed portions other than 1/2, portions which might be different from each other (and were 
their locations with respect to the dividing line immaterial), existence would seem to be provided 
by De Cecco [12] except that his result is not true in the generality he states (Fenske's [14] 
review, saying that De Cecco [12] is a correct but trivial extension, is unfortunate). One set 
of counterexamples is associated with the nonexistence part of Sumn-mary 7.1 e.g., let the sets 
be translates of each other by sufficiently short distances and the reader will find others. My 
favorite counterexarriple spotted by the Los Alarnos physicist L. Heller during lhnch concerns 
"Soup". 
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square have data which is compatible with the data associated with some line---at 
least, to the extent that, with X2 at the right-angle, (a) e2 does not lie between 
the other two c , and (b) at least one, call it c, of the other two lies on the side 
opposite 1/2 from c2 then (A2.3), with d = Af2, can be used to ensure existence 
of a solution to (7.2) (or for the other data pair whose average colors embrace 1/2). 

(A2.1), (A2.2), or (A2.3) are sufficient conditions (in their respective contexts) 
for the existence of solutions to (7.2) by the following continuity argument. Recall 
the circles C (w) (7.3b) centered on Xi with radii r (v) h If17(i)I (7.3a). 

Let ce := Z,,. Suppose first that cl < C2. Each of (A2.1), (A2.2) or (A2.3) 
ensures that, for any M = v(oz), the right-hand side of (7.2) lies in [0,1]. Hence, 
its arccosine defines two functions -Yi(oz), on [(i - 1)7r/2,i7r/21, to itself---i 1 or 
4 being the quadrant in which (1, a) lies in suitable polar coordinates. We argue 
in detail only about -11. Since each f,-)(5i) is a continuous function of oz, 1 is, 
too; and we need show only that if -1 (0)0 c, then we have a solution. So, with 

(a) = ae fixed in [0, 7r/2], set M := >(a). There are three cases. (1) Suppose 
C2 < fv(O). Then ri(v) > r2(w), and there is a solution---specifically, a line L, 
mutually tangent to the two circles, with M (on L,) pointing away from both Xi. 
(2) Suppose cl < f>(O) < C2. Then there is a solution-- specifically, a mutually 
tangent line with v pointing away from X1 and towards X2 . (3) Suppose fV (0) < cl . 
Then ri(v) < r2(v), and there is a solution---specifically, a mutually tangent line 
with M pointing towards both Xi. 

We conclude that if - < -, then there is a solution with c in [0, 7r/21, and 
(arguing with -4) another in [37r/2, 27r]. The two are distinct unless -ti(O) = 0 and 

-14(27r) = 27r. 

Finally, for cl > C2: the right-hand side of (7.2) now lies in [-1, 0]. The argument 
is similar, but one works with _t2 and t3. 

SUMMARY A2. 1. (Compare Summary 7.1.) For f, dependent on M: Condi- 
tions (A2.1), (A2.2), or (A2.3) suffice (in their respective contexts) for the existence 
of at least one oriented line L, solving (7.2). The component vl of M along X1X2 
is in the direction of increasing c- for any solution. There will be at least two 
solutions-- not necessarily reflections but still one with i on one side of XlX2 and 
a second, on the other side- unless (a) cl and C2 lie on the same side of f?T(O) and 
r2(?T) - 

rl(?T)l = 6, or (b) el and C2 embrace f?T(O) and rl(?T) + r2(?T) = 6. 

As for necessary conditions: in view of (7.2) and the mean value theorem, replace 
'sup" with "inf' and/or "min" with "max" in (A2.1) or (A2.2). In particular, 

there always exist usable numbers cl and c`2 which are too far apart, relative to 
small HJX2 - X1 fl/h, for any linear border to yield such an increase in such a short 
distance. For the specially sensitive disc yielding the l-independent, linear (where 
usable) cumulative distribution function fr = f (6.1), all five conditions coincide 
with Jc2 -cl < 6/h. 

Existence and uniqueness for data near linear-border data is considered in Propo- 
sition 8.1. We do not, develop specific algorithms for solutions of (7.2) when f, is 
truly v-dependentt, b1lt note that Algorithm A1.2 ooulld be useful in iteration. 
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Appendix 3. The Angle Between a Circle and a Small Nearby Line 
Segment. It suffices to prove (9.4) in the context of O's osculating disc halfway 
between X,3,j and Xfl,ft. 

Thus, suppose h -+ 0, that C is a circle of curvature /c (there, /I,3,j1+/2), and 
that distinct points X1 = X1(h) and X2 = X2(h) (there, Xj and Xj+1) converge 
to a point c on C. Let 6 := 11X2 -XiI = 0(h), and r := (X2 - X1)/6. Let 
Y1 and Y2 (there, X:,j and Xf,3,+1) be the closest points on C to X1 and X2, 
respectively. With vi the unit normal to C at Yi pointing toward C's center, set 
vi1 := zV (Xi - Yi)/h, and presume it bounded. Let ii be the unit normal to Y1Y2 
(also pointing toward C's center). We wish to prove the present analog of (9.4), 
namely, that 

(A3.1) ((J2-(J1) h/E= T M (1 + 0(r2 62)). 

Now, (Xi- Y ) = hao vi, so 

(M -v.) (Xi -Yi) = (1- v v.) ho,. haio(EK 

since v' vi = cosce with sinoc = OQ'c 11Y2 -Y11) = 0(ic 11X2 - Xi [1 + 0(h)I) = 

0(ic6). With this, 

(aJ2 - 1) h = V2 * (X2 - Y2) -1 (X1 - Y1) 

= Vw (X2-Xi)-(w(-Vw2) * (X2-Y2)+(V- V) * (Xi -Y1) 

= v T* - (1 - V 12) ha2 + (1 - v -v) ha1 

= l* T8- (a2 -a)h* .0(i2 62), 

and (A3.1) follows. 

Appendix 4. The Cumulative Distribution Function of Polyhedra. (No- 
vember, 1987). We review first a definition, equivalent to Curry and Schoenberg's 
[10], of a polynomial B-spline the one normalized so that its integral over its 
support is one. For n > 2, let S be a nondegenerate n-dimensional simplex with 
vertices (vi)O, and let l, be a line through the origin in the direction of the unit 
n-vector v. Let ti = vi be the signed distance from the origin of the orthogo- 
nal projection P~vi of vi onto l,. Now, reorder the ti so that the (n + 1)-sequence 
T(S, v) (to,... , tn) is monotone nondecreasing. Then the value, at the real 
number (, of the (nth-order, univariate, polynomial) B-spline MT(SV) with knots 
T(S, v) is the ratio of the (n - 1)-dimensional volume of a linear section of S the 
one contained in the (n - 1)-dimensional hyperplane H,(() := {x: v x = (} 
normal to v and intersecting l, at the signed distance ( from the origin to the 
(n-dimensional) volume of S itself. (This geometric notion has been extended to 
create multivariate simplicial B-splines (de Boor [4]) and other types of multivariate 
B-splines see, e.g., H6llig [16].) 

Consequently, the cumulative distribution function for 1v-normal hyperplanes 
(A1.2), associated with the (constant) density p of a homogeneous simplex S of 
mass one, is 

(A4.1) fv(of;S) J MT(sv)(0)d& 
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Moreover, the cumulative distribution function associated with the union U of indi- 
vidually homogeneous simplices Sj of mass w3 (Ej w. = 1), and who's interiors 
do not overlap is f, (u; U) :>= jwJf>, (; Sj). Such functions are therefore uni- 
variate, polynomial splines of order n + 1 (degree n) whose knot set T(U, u) is a 
subset of the (reordered) projections of all of the vertices involved. Note, however, 
that (a) T(U, v) may be a proper subset of all the vertex projections; and that 
(b) although one can associate a sequence of nth-order B-splines with the natural 
ordering of T(U, v) and then associate a simplex with each of these B-splines, the 
union of the closed simplices so defined need not coincide with U. 

As for a more specific algorithm: Because some of the n + 1 knots in T(S, v) 
may coincide or be close to coinciding (although no knot has multiplicity exceeding 
n as S is nondegenerate), it seems wise to utilize the widely available computer 
programs (e.g., in the IMSL or SLATEC libraries) that de Boor [2], [5] created, 
based on algorithms (de Boor [3], see also Cox [9]) developed for the stable (Cox 
[9]) computation of B-splines. For this, recall that with any nondecreasing bi- 
infinite knot sequence (t )? (in which at most k elements coincide) there is 
associated the bi-infinite sequence of kth-order B-splines (B',k)Y' (each with its 
knots t < < <... ? ti+k, and normalized so that >i Bik(x) 1). B ,k is positive 
on (ti, ti+k) and vanishes outside [ti, ti+k]; so that, if tL < tL+1 and tR-1 < tR, the 
only B-spline coefficients relevant to the value of a kth-order spline s = >2 ciBi,k 
on (tL,tR) are CL-k+1... .CR-1 

From de Boor's book [5, p.109], MT(SV) = nBon/(tn - to). Thus, integrating 
the divided difference definition of Bo,, (ibid., p.108), we find f, (A4.1) to be given 
by 

(A4.2) MO((; S) = [to,...,* t.1 (.* + 017+ 

in which (y)n+ is (the "positive part" of y)f, and the nth-order divided difference 
operator [to, ...,tn] is defined even for coalescent cases (ibid., p.10). (A4.2) is 
tempting for parallel computation since its evaluation does not require to, .. ., tn to 
be ordered and since (y)+ = (y + IyI)/2 requires no branching. But, the truncated 
powers are an ill-conditioned way of representing splines (ibid, pp.17-19, pp.104- 
105), and the divided difference can not only require branching for near-coalescence 
but has additional conditioning problems. So, we propose to calculate f, (A4.1) in 
two other ways. 

For the first: Suppose the left-most knot in T = T(S, v) has multiplicity 1 
(1 < 1 < n since S is nondegenerate); i.e., suppose to = = t1_1 < ti. Extend the 
sequence T to the left by adjoining n + 1 -1 additional knots equal to to, so that to 
has multiplicity n + 1 in the extension (actually, any suitably ordered n + 1 - I extra 
knots would do in principle, but this choice insures that numerical conditioning is 
not made worse, cf. de Boor [6]): 

(A4.3) tl-l-n = - * = to til < ti <_ tn. 

PROPOSITION A 4. 1. For -CT in (to, tn) and with 1 (< n) the multiplicity of to 
in T(S, v), the cumulative distribution function (A4.1) is the sum of the n - 1 + 1 
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B-splines of order n + 1 (degree n) associated with the knot sequence (A4.3): 
-1 

(A4.4) f (u;S) = E Bj, n -+), to < -uf < tn. 
j=-l--n 

(Of course, fL is one for -v < to and zero for -a > tn.) 

Proof. Although this follows, using MT = E3 .6j (n/(tn+3 - t3 )) Bj1n, from 
de Boor's [5, pp. 150--151] discussion of the integration of a spline represented by 
its B-spline coefficient sequence, we verify it directly. Suppose tn had multiplicity 
m in T. Extend the knot sequence (A4.3) to the right by adjoining n + 1 - m more 
knots equal to tn, so that also 

tn-r <tn-m+l = = t= t2n+lm. 

The coefficients of the B-splines Bin+? which are relevant to the values of a spline 
, d-B-,n+ 1on (tNAt) = (ti1,tn-m+1) are 

(dd-n-n . d- - do, ... - dzm); i.e., (1, . ..,1, 0, .. ,0) for (A4.4). 

But, the coefficients of the nth-order B-splines relevant to this spline's derivative 

ZciB2,n on (tNtA) = (t1ii,tn-m+1) are c1-n, . ,cn-m. According to de Boor 
[3], [5, p. 138], the B-spline coefficients of the first derivative of an (n + 1)th-order 
spline E d B ,n+1 are given by the first-order de Boor difference-quotient (as I call 
it in Swartz [25, p.135]) sequence (A\ld)1 := [(di di_1)/ ((ti+n - t-)/n)] of its 

coefficients; hence, here, by 

(ci-n, 1 - Co, cl - -,Cn-m) =(O0,... , O,-n/(tn-to), ? . . ) 

(co + 0 taking precedence in ambiguous cases). As we have already noted, this 
is the negative (as is required) of the coefficient sequence of MT(s,,L) relevant to 

(to, tn). 

It remains to show that (A4.4) is not off by an additive constant. But tn has 
multiplicity m < n -- as the final knot not only in T, but also in the right-most 
B-spline B_1,n+l in (A4.4). Hence, the limit of each term there, as -u I tn, is 
zero. 

Assuming de Boor's B-spline program package is available, (A4.3)-- (A4.4) is easy 
to code. But that package can also produce local representation of the (up to) 
n polynomial pieces which together comprise MT(S,V) = nBo,n/(tn - t0), pieces 
which could then be integrated as appropriate to the computation of (A4.1) and 
the resulting code could be more efficient. Along these last lines, we supply (in 
the Supplement) a computer program which, for n = 3 dimensions and given the 
nondecreasing quadruple T(S, v), evaluates (A4.1) without recourse to de Boor's 
package. This code is based on the fact that the three columns in diag(1, 2,1) times 
the final matrix-product in Swartz [25, p.146] are, when suitably interpreted, the 
coefficients of the polynomial pieces of Bo03. Thus with h+ t3- t2 assumed 

positive, ho := t2 - tl > 0, t23 := (t2 + t3)/2, x := (2h( + h+)/h+, an(I y := 1, 

the matrix's first column constitutes the (coefficients of 1, r, r12 for the quadratic 

q(rq) = Bo,3(t23+h+rq/2). -1+ < K < 1_. The second and third columns yield, with 

all quantities suitably redefined, the qlla(lratics on the mhi(d(dle and( first intervals, 

respectively. 
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Finally, consider the computation of the cubic spline which represents, for a given 
normal v, the cumulative distribution function for v-normnal planes associated with 
the 3-cube of unit mass having vertices Ck = k/2, k := (?1, ?1, ?1). Given the 
general discussion above (and the computer code in particular), it suffices to recall 
the decomposition of the cube into five interiorly disjoint tetrahedra. Four of these 
tetrahedra, SI, . . . , S4, will be congruent, "corner-cut-of' tetrahedra-each with 
basal area 1/2, hence mass 1/6. The fifth, centrally located tetrahedron S5 with 
its consequent mass of 1/3---is regular, i.e., equisided, and determines the particular 
decomposition. Its six (1-dimensional) edges are diagonals of the cube's six faces, 
with one diagonal per face thus, choose a face and a diagonal on it, and the rest 
is determined. 

On the other hand, Youngs [29] presents formulas for the five special cases he 
associates with this cumulative distribution function for a 3-cube. 

Zemach [30] has derived the cumulative distribution function for v-normal planes 
of a 3-dimensional "hexahedron"--that generalization of a cube each of whose 
"faces" is the ruled surface spanning its four associated (and appropriately ordered) 
vertices. 
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